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Parallel Query Execution
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Parallelism

Why parallelism
• allow multiple users at the same time
• better utilize hardware resources (CPU and IO)

Forms of parallelism
• inter-query parallelism: execute multiple queries concurrently

I map each query to one process/thread
I concurrency control mechanism isolates the queries
I except for that parallelism is “for free”

• intra-query parallelism: parallelize a single query
I horizontal (bushy) parallelism: execute independent sub plans in parallel

(not very useful)
I vertical parallelism: parallelize operators themselves
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Vertical Parallelism: Exchange Operator
• implements iterator interface
• optimizer statically determines at query compile-time how many

threads should run
• instantiates one query operator plan for each thread
• connects these with exchange operators, which encapsulate parallelism,

start threads, and buffer data
• relational operator can remain (largely) unchanged
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Exchange Operator Variants

• Xchg(N:M) N input pipelines, M output pipelines

Many useful variants
• XchgUnion(N:1) specialization of Xchg
• XchgDynamicSplit(1:M) specialization of Xchg
• XchgHashSplit(N:M) split by hash values
• XchgBroadcast(N:M) send full input to all consumers
• XchgRangeSplit(N:M) partition by data ranges
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Parallel Aggregation with Exchange Operators
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Parallel Join with Exchange Operators
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Disadvantages of Exchange Operators

• static work partitioning can cause load imbalances
• degree of parallelism cannot easily be changed mid-query (e.g., when a

new query arrives)
• overhead:

I thread oversubscription causes context switching
I hash re-partitioning often does not pay off
I exchange operators create additional copies of the tuples
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