
1 / 7

Efficient Query Processing Parallel Query Execution

Parallel Query Execution



2 / 7

Efficient Query Processing Parallel Query Execution

Parallelism

Why parallelism
• allow multiple users at the same time
• better utilize hardware resources (CPU and IO)

Forms of parallelism
• inter-query parallelism: execute multiple queries concurrently

I map each query to one process/thread
I concurrency control mechanism isolates the queries
I except for that parallelism is “for free”

• intra-query parallelism: parallelize a single query
I horizontal (bushy) parallelism: execute independent sub plans in parallel

(not very useful)
I vertical parallelism: parallelize operators themselves



3 / 7

Efficient Query Processing Parallel Query Execution

Vertical Parallelism: Exchange Operator
• implements iterator interface
• optimizer statically determines at query compile-time how many

threads should run
• instantiates one query operator plan for each thread
• connects these with exchange operators, which encapsulate parallelism,

start threads, and buffer data
• relational operator can remain (largely) unchanged

r

v

R

r

v

R1

r

v

R2

r

v

R3

Xchg(3:1)

r



4 / 7

Efficient Query Processing Parallel Query Execution

Exchange Operator Variants

• Xchg(N:M) N input pipelines, M output pipelines

Many useful variants
• XchgUnion(N:1) specialization of Xchg
• XchgDynamicSplit(1:M) specialization of Xchg
• XchgHashSplit(N:M) split by hash values
• XchgBroadcast(N:M) send full input to all consumers
• XchgRangeSplit(N:M) partition by data ranges



5 / 7

Efficient Query Processing Parallel Query Execution

Parallel Aggregation with Exchange Operators

r

v

R

r

v

R1

r

v

R2

r

v

R3

Xchg(3:1)

r

XchgHashSplit(3:3)

v

R1

v

R2

v

R3

r r r

Xchg(3:1)

XchgHashSplit(3:3)

v

R1

v

R2

v

R3

r r r

Xchg(3:1)

r r r



6 / 7

Efficient Query Processing Parallel Query Execution

Parallel Join with Exchange Operators

B

R

Sv

v

R1

v

R2

v

R3

XchgHashSplit(3:3)

B

S1 S2 S3

XchgHashSplit(3:3)

B B

Xchg(3:1)



7 / 7

Efficient Query Processing Parallel Query Execution

Disadvantages of Exchange Operators

• static work partitioning can cause load imbalances
• degree of parallelism cannot easily be changed mid-query (e.g., when a

new query arrives)
• overhead:

I thread oversubscription causes context switching
I hash re-partitioning often does not pay off
I exchange operators create additional copies of the tuples


	The Classical Architecture
	Efficient Query Processing
	Parallel Query Execution


