Efficient Query Process ing Parallel Query Execution

Parallel Query Execution

Efficient Query Processing Parallel Query Execution

Parallelism

Why parallelism
e allow multiple users at the same time

e better utilize hardware resources (CPU and 10)

Forms of parallelism
e inter-query parallelism: execute multiple queries concurrently

» map each query to one process/thread
» concurrency control mechanism isolates the queries
» except for that parallelism is “for free”

e intra-query parallelism: parallelize a single query

» horizontal (bushy) parallelism: execute independent sub plans in parallel
(not very useful)
» vertical parallelism: parallelize operators themselves

Efficient Query Processing Parallel Query Execution

Vertical Parallelism: Exchange Operator

implements iterator interface

optimizer statically determines at query compile-time how many
threads should run

instantiates one query operator plan for each thread

connects these with exchange operators, which encapsulate parallelism,
start threads, and buffer data

relational operator can remain (largely) unchanged

|
Xchg(3:1)
VRN
r r r

T —a—

Efficient Query Processing Parallel Query Execution

Exchange Operator Variants

e Xchg(N:M) N input pipelines, M output pipelines
Many useful variants

e XchgUnion(N:1) specialization of Xchg

e XchgDynamicSplit(1:M) specialization of Xchg
XchgHashSplit(N:M) split by hash values
XchgBroadcast(N:M) send full input to all consumers

XchgRangeSplit(N:M) partition by data ranges

ol
Parallel Aggregation with Exchange Operators

Xchg(3:1)
Xchg(3:1) / | \
r
| r/ 1|“ \r \ | /
X°h9|’(3:1) N4 XchgHashSplit(3:3)

r £ T \F XchgHashSplit(3:3) N

| o SN Vo
g ag g g g g g

| I I ‘|7 ‘|7 T
R R, R, R R, Rs R

Efficient Query Processing Parallel Query Execution

Parallel Join with Exchange Operators

Xchg(3:1)
M N/ 1>|4 \N
& TN
‘|7 S
R XchgHashSplit(3:3) XchgHashSplit(3:3)
N N
ag g g

] S S2 S

R, R, Ry

Efficient Query Processing Parallel Query Execution

Disadvantages of Exchange Operators

e static work partitioning can cause load imbalances

e degree of parallelism cannot easily be changed mid-query (e.g., when a
new query arrives)

e overhead:

> thread oversubscription causes context switching
» hash re-partitioning often does not pay off
» exchange operators create additional copies of the tuples

	The Classical Architecture
	Efficient Query Processing
	Parallel Query Execution

