High-Speed Query Processing
over High-Speed Networks

Wolf Rodiger, Tobias Muhlbauer, Altons Kemper, Thomas Neumann

+ .
i t+ableau

Traditional Data Warehouse

~— Q\
Extract

Transactions Transform Analytics

00000 Load m

Database Data Warehouse

Traditional Data Warehouse

 |solate business-critical
from

analytical queries

« ETL process to update
the data warehouse

e Periodic refresh leads
to data staleness

Extract

Transform
Load

)

Data
Warehouse

AyPer

Analytics
Excellent response times

100k TPC-C transaction/s

Q

000

Both workloads on the
same state in one system

Code generation, MVCC

Scale the HyPer main-
memory datapase system
to a cluster of machines

~ull Replication

 Heplicate the data
from a primary server E

* Improved query ~—

throughput

(«
L\

(O
El ?Q ng 3'0 3/0

e Same main-memory,
same response times
as a single server

 Partition the data

e |[ncreases main-

e But can we also

Horizontal Partitioning

dCross servers

Q
000

memory capacity

(0@

speed up query
processing?

Speed-Up”? Easy!

speed up

servers

... as long as the system is slow on one server.

8

Unfortunately, HyPer is Fast

100%
O
O
&
g /5%
O
D
O 50%
O
D
N
© o
g 25%
O
-

0%

{DB2 BLU, HANA, Oracle, HyPer

PostgreSQL, Vectorwise}

9

Negative Speed-Up

e Queries

for joins and

aggregations

main bottleneck

e More servers =

1S

Gigabit Ethernet

N
Pad

@y,
X

TPC-H speed-up
— N
X X

O
X

1T 2 3 4 5 ©

number of servers

10

Scale HyPer to a cluster
and It should be fast

Can’t we just avoid
communication?

 Partition the data

Can’t we just avoid
communication?

(H-Store/VoltDB do
this for transactions)

* Partition-crossing ...

gueries problematic <>
N

Partition 4

e Partitioning depends
on the workload

13

Can’t we just use faster
network hardware?

X

© @

Can’t we just use faster
network hardware?

12
* Low bandwidth is o W InfiniBand
. m Ethernet
main pottleneck G g
=
* InfiniBand offers up to %
100x the bandwidth 5 4
g
e EXxisting software can .

use |IPolB unchanged

15

Can’t we just use faster
network hardware?

O |nfiniBand

* New bottlenecks: X e
Q.

» TCP/IP stack e ——
: O
rocessin O

p g % DN
* Interrupts T
O
» Context switches =

.)%
* Multiple memory 1 2 3 4 5 6

transfers number of servers

16

Software has to Change

e For networks Gigabit Ethernet

more servers = @ InfiniBand
ess performance

N
X

oy,
X

* New bottlenecks
emerge for faster
networks

TPC-H speed-up
— N
X X

csiggurO=——0~"0"0

1T 2 3 4 6 0

number of servers

O
Pat

e Software has to
change as well

Two Types of Networks

59.7[| 159.7
GB/s . ’ ’ |GB/s

128 GB
128 GB

e — LYYy — 5

M host?

4 GB/s Blalilll=FETle K@l =

18

Two Types of Networks

QPI InfiniBand QDR

* Connects NUMA * Connects servers in a
sockets in a server cluster

* 32 GB/s bandwidth * 4 GB/s bandwidth

* 0.2 ps latency * 1.3 ps latency

e Cache-coherent * Not cache-coherent

19

Hybrid Parallelism

On each server:* Between servers:

e Use flexible worker * Use Remote Direct
threads instead of Memory Access
exchange operators (RDMA) instead of TCP

 Work stealing per CPU + Decoupled exchange

| operators

* Work stealing across
NUMA sockets * Network scheduling

* Leis et al., Morsel-driven parallelism, SIGMOD 2014 m

TCP over InfiniBand

TCP is compute-
bound at the recelver

Even with large MTUs
and TCP offloading

Using a separate core
for interrupts improves
throughput by 53%

Still compute-bound

21

20s

158

10s

5s

Os

B busy W idle

sender recejver

Remote Direct Memory Access

 Bypasses operating
system and application

 Zero-copy network
communication:

* Achieves full
network throughput

e Almost no CPU cost

* Less data copying

22

Application

Buffer

Operating
System

sender

Application

Buffer

Operating
System

receiver

Remote Direct Memory Access

TCP via IPolB RDMA

+35%
B throughput

—98%
CPU time

sender receiver sender receiver m

Classic Exchange

* A buffer per exchange:

e # buffers per server
= servers X cores?

e 1 GB/server for
6 hosts and 20 cores
» Skew is huge problem:

e Join key assigned to
fixed exchange

 No work stealing

host O

host 1

host 2

24

exchange

exchange

exchange

exchange

exchange

exchange

exchange

exchange

exchange

\/

exchange

exchange

exchange

Decoupled Exchange

 Use communication
multiplexers (CM)

e Address servers not
Individual cores:

* Decreases memory
consumption (2.5 MB
instead of 1 GB)

* Reduces negative
impact of skew

* Makes broadcast
more applicable

25

host O

host 1

host 2

exchange

exchange

exchange

exchange

exchange

exchange

exchange

exchange

exchange

exchange

exchange

exchange

TPC-H speed-up

Decoupled Exchange

Vectorwise Vortex (exchange)
O HyPer (exchange)
O HyPer (decoupled exchange)

6 (1) 30 (5) 60 (10) 90 (15) 120 (20)
number of servers

20

Network Scheduling

* Uncoordinated all-
to-all transfers cause nout queues M outputs

switch contention 2 3 4

N

e Make sure a server 5 Bn1
sends to at most

one server 3 I . .

 Low-latency inline 4 EB

RDMA messages for inputs crossbar switch

network scheduling

27

throughput in GB/s

Network Scheduling

O all-to-all O scheduling
4 ___
1 ___
0
2 3 4 5 6 / 3

number of servers

28

summary

Gigabit Ethernet

el networks o |nfiniBand
more servers = O Hybrid Parallelism
ess performance

>
New bottlenecks s
emerge for faster Q
networks L

O

-
Hybrid parallelism Ox

optimizes for both 1 2 3 4 5 6
types of networks number of servers
. nm

How do we compare”

HyPer Scale-Out
Vectorwise Vortex
MemSQL

Impala

Spark SQL

0

123

I

3,856

20,739

5,000 10,000 15,000 20,000 25,000

TPC-H queries/h

30

Future Work

Q
000

What about low-latency distributed ?

31

Backup

Elasticity

ebfad

8798a c13ff

f6f9e

553b6

62d4b

High Availability

Jrders 4 l
Orders

Hot/cold approach
=

redo log

o000

persistent

multicast storage

redo log

o | HOT_

couo [JS | coos I8
COLD 1 AU COLD 2

~

HOT

Qo
-
O
&

COLD 3 |‘ﬂ

a2 2 2

distributed queries on global TX-consistent snapshots

Parallelism

“J mmm7- ases i

=

e :

‘a

practice

