Database Cracking

David Werner
January 23, 2018

Technische Universitat Miinchen

Table Of Contents

Database cracking
Basics
Cracking index
Algorithms

Advantages

Implementation
Cracking Algorihtms
Cracking index struct

Bt — Tree

Evaluation

Database cracking

What is database cracking? - 1

self organized indexing and index maintenance

e queries are used as advice to crack the database in pieces

cracking means physically reordering the database

sequential access for range queries is guaranteed

What is database cracking? - 2

e original column stays in insertion order
e cracking column is used for reordering

e this allows fast reconstruction of records

Cracking example

Query 1: X <5

Query 2: 5 <=X <=8
Y

113|412 |7|6|5|8]|9

U Query 2: 8 < X

Cracking index

e index on cracking column
e stores information about every crack

e bound value
e end position of piece
e inclusive flag

Cracking in two pieces - basic

Algorithm 1 Crack in two pieces

1: procedure CRACK_IN_2(column, left, right, value, inclusive)
while left < right do

3 if column|left] Ay value then

4 left < left + 1

5 else

6: while columnl[right] Ay value and left < right do
7: right < right — 1

8 end while

9: swap(column(left], column([right])

10: left < left + 1

11: right < right — 1

12: end if

13: end while
14: end procedure

Ay is < or <, Aj is > or > depedending on the inclusive flag

Cracking in two pieces - branch free

Algorithm 2 Crack in two pieces (branch free)

1: procedure CRACK_IN_2_BF(column, left, right, value, inclusive)
o cmp

3 active <— columnl|left]

4 backup <— column(right)

5: while left < right do

6: cmp <— active A; value

7 columnl(left] < active

8 column(right] <— active

9 left < left + cmp

10: right < right — (1 — cmp)

11: active < (column(left] x cmp) + (column([right] = (1 — cmp))
12: swap(active, backup)

13: end while

14: columnlleft] < active

15: end procedure

Cracking in three pieces

Algorithm 3 Crack in three pieces

1: procedure CRACK_IN_3(column, left, right, valuel, value2, inclusivel, inclusive2)
2: tmp < left

3: while left < right do

4: while left < right and column|left] Ay value2 do
5: if column(left] A; valuel then

6: swap(column(left], column[tmp])

7: tmp < tmp + 1

8: end if

9: left < left + 1

10: end while

11: while left < right and column([right] Ay value2 do
12: right < right — 1

13: end while

14: if left < right then

15: swap(columnl(left], column|right])

16: end if

17: end while
18: end procedure

Database cracking has some interesting properties:

e no copying of query results
e no updfront knowledge about workload required
e physcial reordering can be supported by index

e consecutive cracks receive speed from index

Implementation

Cracking Algorihtms

All three cracking algorithms

Return last position of piece in cracking column

e < and < cracks only

> and > queries can use these results

10

Cracking index struct

e Combines cracking algorithms with cracking index
e Comprises:

e Pointer to original column

e Pointer to cracking column

e Column size

e Map as index
e Main functionality:

e Find pieces

e Query (single bound, double bound)

11

Find piece - 1

exact match:

start end

A
A
Y
A
Y

5 | false 7 | false 13 | true

T Start T End

returns: true

12

Find piece - 2

no match at all® or inclusive flag does not match? :

3 5 18
start |« > < > “« > < » end
5 | false 7 | false 13 | true
A
T Start T Endl End2

returns: false

13

Two different types of queries

e single bound (e.g. X < a)
e double bound (e.g. a < X < b)

Query method interface:

e Require bound value(s) and inclusive flag(s)

e Return start/end position of result piece(s)

14

Query - single bound

simple control flow:

. Find piece for value

. If exact match: return

1

2

3. Otherwise: crack
4. Add crack to index
5

. Return

15

Query - double bound

Find piece for both bounds

Depending on results different cases need to be handled
e Four easy cases:

e None of both bounds needs a crack
e Both bounds need crack in different pieces
e Upper/lower bound needs crack

Two involved cases

16

Special case 1

example query: 9 < X < 12

14|18 |13

solution: crack in three pieces

17

Special case 2

example query: 4 < X <13

14|18 |13

solution: crack yellow first, use result to crack red

18

Extensions and Usage

e Extensions:

e Leaves have sibling pointers

e Pointer to leftmost leaf

e Tree stores: / \

e bound values as keys

e position and inclusive flag as payload

19

Query operation

1.
2.
8
4.
5.
6.

Find start position

Find end position

Traverse leaves

Lookup column positions
Copy column values to output

Stop at end position

20

Evaluation

Test cases

e Comparison of ,,Crack in two" algorithms

e 500'000'000
e single crack

e Cracking vs. Indexing

e 50'000'000 values in column
e 100 consecutive cracks

21

Comparison of cracking algorithms

small result piece: big result piece:

1220
1000

1189.89
750

timems
timems

o

approach ‘ approach

22

Cracking vs Indexing

single crack workload: only cracks workload:

=
o
o .
£ E
g g
E E

23

	Database cracking
	Basics
	Cracking index
	Algorithms
	Advantages

	Implementation
	Cracking Algorihtms
	Cracking index struct
	B+-Tree

	Evaluation

