
TU München, Fakultät für Informatik
Lehrstuhl III: Datenbanksysteme
Prof. Alfons Kemper, Ph.D.

Exercise for Database System Concepts for Non-Computer Scientist im
WiSe 18/19

Alexander van Renen (renen@in.tum.de)
http://db.in.tum.de/teaching/ws1819/DBSandere/?lang=en

Sheet 04

Exercise 1

Consider the entity relationship model of a train connection system (below). Note: connects
models a the direct connection between two stations. For example, the train starting in Mu-
nich and ending in Hamburg passes through several stations. Each of these route-sections
(e.g., Munich → Nürnberg or Nürnber → Würzburg) has an entry in the connects relation.

a) Add functionalities to the ER diagram.

b) Transform the ER diagram into a relational schema.

c) Refine the relational schema as far as possible by eliminating relations.

Station
#platforms

name

Citylocated_in

name

state

Train

trainNo #wagons

start connects end

departure

arrival

Solution:

a) Adding functionalities

Figure 1 shows the entity relationship model with functionalities.

b) Create a relational schema

The un-refined translation yields the following relations for the entities in the model:

City : {[name : string, state : string]} (1)

Station : {[name : string,#platforms : integer]} (2)

Train : {[trainNo : integer,#wagons : integer]} (3)

1



Station
#platforms

name

Citylocated_in

name

state

Train

trainNo #wagons

start connects end

departure

arrival

1N

11

1 1

N
NN

Figure 1: ER-Model for train connection with functionalities.

For the relationships in the model, we create the following relations:

located in : {[stationName : string, cityName : string, cityState : string]} (4)

start : {[trainNo : integer, stationName : string]} (5)

end : {[trainNo : integer, stationName : string]} (6)

connects : {[fromStationName : string, toStationName : string, (7)

trainNo : integer, departure : date, arrival : date]}

c) Refine the relational schema

Next, we refine the relational schema by combining relations.

In this step we merge relations for binary relationships into relations for entities, if the
relations have the same key and it was a 1:N, N:1 or 1:1 relationship in the ER-model.
Note: A binary 1:N relationship can be merged into the entity with the N next to it.

Doing so we can merge the (4) relation into (2). (5) gets merged into (3). And same for
the end relation, which also gets merged into train.

(4) 7→ (2), (5) 7→ (3), (6) 7→ (3)

Thus, we end up with the following schema:

City : {[name : string, state : string]}
Station : {[name : string,#platforms : integer,

cityName : string, state : string]}
Train : {[trainNo : integer,#wagons : integer,

startStationName : string, endStationName : string]}
connects : {[fromStationName : string, toStationName : string,

trainNo : integer,departure : date, arrival : date]}

2



In our model the train number is uniquely identifying a connection between two cities
(possibly involving serveral stations). An ICE starting in Munich (startStationName) and
going to Berlin (endStationName) has a unique train number. When the train returns it
has a different train number. Therefore, in the connects relation, the (trainNo, fromSta-
tionName)-pair and the (trainNo, toStationName)-pair are both valid keys (as they are
both uniquely identifying a tuple in the relation).

Exercise 2

Now, if you want more practice, consider the hospital example, again. This time take the
entity relationship diagram and transform it into a relational schema. Then, optimize it
by eliminating relations.

Hospital Departmentconsists_of
N1

address #beds name

Station

Room

contains

number

has

N

1

1

Employee

employs

N

M

salary

id

is_a is_a

Nurse Doctorsuper-
visesN M

runs

M

N
has

1

N

works

Shift

date

from

to

1

1

N

1

number

area

Solution:

3



a) Create a relational schema

The un-refined translation yields the following relations for the entities in the model:

Hospital : {[address : string,#beds : int]} (8)

Department : {[address : string, name : string]} (9)

Station : {[address : string, name : string, stationNo : int]} (10)

Room : {[address : string, name : string, stationNo : int, roomNo : int]} (11)

Employee : {[id : int, salary : int]} (12)

Nurse : {[id : int]} (13)

Doctor : {[id : int, area : string]} (14)

Shift : {[date : date, from : time, to : time]} (15)

For the relationships in the model, we create the following relations:

consists of : {[address : string,departmentName : string]} (16)

department has : {[address : string,departmentName : string, stationNo : int]} (17)

contains : {[address : string,departmentName : string, (18)

stationNo : int, roomNo : int]}
employs : {[address : string, id : int]} (19)

supervises : {[nurseId : int,doctorId : int]} (20)

doctor has : {[doctorId : int, address : string, departmentName : string, (21)

stationNo : int, roomNo : int]}
runs : {[doctorId : int, address : string, name : string]} (22)

works : {[employeeId : int, address : string, name : string, (23)

date : date, from : time, to : time]}

There are several alternative translation options:

1. The is a relationship could have also been translated by merging the attributes of the
Employee into the Nurse and Doctor relation:

Nurse : {[id : int, salary : int]}
Doctor : {[id : int, area : string, salary : int]}

2. In the 1:1 relation has between Doctor and Room we could have also chosen the key of
the Room as a key.

3. In the ternary relation works we could have also chosen (employeeId, date, from, to) as
a key.

b) Refine the relational schema

Next, we refine the relational schema by combining relations.

All binary relations with 1:1, 1:N, N:1 can be refined in the following way:

First, we can eliminate all relations that originate from weak relationships in the ER-
model. In this case we do not have to add additional keys to the entity we merge them
into because they already have this key because they are weak entities:

4



(16) 7→ (9), (17) 7→ (10), (18) 7→ (11)

Next, we take care of the has relation between Doctor and Room. This is a 1:1 relation
and can therefore be merged into Doctor or Room. We choose to merge it into room, as
this requires us to only add one attribute to Room instead of four to Doctor :

(21) 7→ (11)

Now, there is no binary relation left with a 1:1, 1:N or N:1 functionality. Therefore, we
are done and end up with the following relational schema:

Hospital : {[address : string,#beds : int]}
Department : {[address : string, name : string]}

Station : {[address : string, name : string, stationNo : int]}
Room : {[address : string, name : string, stationNo : int, roomNo : int,doctorId : int]}

Employee : {[id : int, salary : int]}
Nurse : {[id : int]}

Doctor : {[id : int, area : string]}
Shift : {[date : date, from : time, to : time]}

For the relationships in the model, we create the following relations:

employs : {[address : string, id : int]}
supervises : {[nurseId : int, doctorId : int]}

runs : {[doctorId : int, address : string,name : string]}
works : {[employeeId : int, address : string, name : string,

date : date, from : time, to : time]}

5


