TU Miinchen, Fakultat fiir Informatik
Lehrstuhl I1l: Datenbanksysteme "-m
Prof. Alfons Kemper, Ph.D.

Exercise for Database System Concepts for Non-Computer Scientist im

Sheet 11

Exercise 1

WiSe 18/19
Alexander van Renen (renen@in.tum.de)
http://db.in.tum.de/teaching/ws1819/DBSandere/?lang=en

Consider the Students relation in our university schema:

a)

b)

[Bonus

Estimate the size (in byte) for an average row of the Students table and then calculate
the size of the entire table, assuming there are 1 million students.

Calculate the time it would take read the entire table using sequential and random
access using an HDD. The seek time is 4 milli seconds, the time for the rotation is
2 milli seconds, and the transfer time is 0.1 milli seconds for a 4 KB block of data
(You can ignore the track-to-track-seek-time). You always have to transfer an entire
4KB page, even if you are only reading a single student tuple (in the random access
case).

Try out the same calculation for an SSD. Here we do not have any seek or rotation
time. In addition, the transfer time is as low as 10 micro seconds for reading a 4 KB

page.

| This exercise is very optional and only if you want to test out your programming
skills. Try to write a small C or C++4 program to measure the performance difference
between random and sequential read of the storage devices on your machine. For
this simply create a big file (around 1GB) by writing a bunch of data to your SSD
or HDD (you can use malloc to obtain 1GB of memory and then initialize it to any
random number). Next, read this data back in: once sequentially from begin to end
and once in a random order. Hint: You can use fopen and fclose to open and close
a file. And then the fread and [fwrite functions to read and write data. For moving
around in a file there is the fseek function.


https://en.cppreference.com/w/c/io/fopen
https://en.cppreference.com/w/c/io/fclose
https://en.cppreference.com/w/c/io/fread
https://en.cppreference.com/w/c/io/fwrite
https://en.cppreference.com/w/c/io/fseek

Solution:

a)

A row in the Students consists of two integer columns (4 Byte) and one varchar
column with length 30 (30 Byte). We, therefore, estimate the size of a student tuple
with 38 Byte. Using this, we can calculate the size of the table: 38 Bytex1000000 =
38 MB

Note: In practice, a database system would usually need a little bit more space
to store the tuple: The length of the text in the varchar field needs to be stored.
There needs to be a way to determine whether the semester is null. And a few
other implementation artifacts increase the tuple size. But for the purpose of the
exercise we can assume 38 Byte.

Sequential access: We have to move the read-write-head of the HDD to the
correct position and wait for the disc to rotate to the right position. After that
we can simply read the 38 MB without repositioning the read-write-head (it only
needs to move to neighboring tracks, which we ignore in this exercise). Due to the
block-based nature of the device (it can only transfer 4 KB blocks of data), we
might have to read some additional bytes at the end:

seek_time + rotation_time + transfer_time % [38 MB =+ 4 KB]
=4 ms+ 2 ms+ 0.1 ms=* [38 MB =4 KB]
= 956 ms

Random access: This time we need to reposition the read-write-head and wait
for the disc to spin to the right position for each tuple we transfer. In addition, (as
above) we can not only transfer 38 Byte, but need to read an entire 4 KB block (or
page) from the HDD. Thus, instead of reading 38 Byte a million times, we actually
read 4 KB a million times (we ignore the unlikely cases where two subsequent
accesses to a tuple happen to be located on the same 4 KB block/page):

(seek_time + rotation_time + transfer_time) x 1000000
= (4 ms + 2 ms + 0.1 ms) * 1000000
=6100 s~ 1 h40 m

For SSDs we can do the same calculation, but simply set the seek and rotation
time to zero and adjust the transfer time:
Sequential access:

transfer_time x [38 MB + 4 KB]

=10 us * [38 MB =+ 4 KB]

=95 ms

Random access:

(transfer_time) * 1000000

= (10 us) * 1000000

=10s



