Physical Data Organisation

Topics:

« Storage hierarchy
« External storage
« Storage structures
¢ ISAM

 B-Trees

* Hashing

* Clustering

IOverview: Storage Hierarchy

Database System Concepts for Non-
Computer Scientists WS 2018/2019

16-Jan-19

IOverview: Storage Hierarchy

1 K (Kilo) =103 1 — 8 Byte/Register
1 M (Mega) = 10¢ Compiler

1G (Giga) =10°
1T (Tera) =1012
1P (Peta) =100

8 — 128 Byte/Cache
cache-controller

upper GB-range,
4 — 64 KB block size
operating system

Rough magnitude,

rapidly outdated! upper TB-range
USCr
PB-range
USCr
Database System Concepts for Non- 3

16-Jan-19 Computer Scientists WS 2018/2019

IOverview: Storage Hierarchy

1 n (nano) =107 < 1ns
1 M (micro) = 10-¢

1 m (milli) =103

< 10 ns

< 100 ns

(Flash-Memory —

Lower TB-range, <10 ms
<100 ps)
SCCS
16-Jan-19 Database System Concepts for Non-

Computer Scientists WS 2018/2019

lOverview: Storage Hierarchy

Idea (1min)

Building (10min)

City (1.5h)
(Mars (2 month))
Pluto (2 years)

Andromeda

(2000 years)

Magnetic Disks

track t

sector s

cylinder ¢

platter ‘

«— spindle

E > e
| S
| |

|
—
v’.—-‘* :
|
| |

| .

s | read-write

: : head

|
| S .~2 \
I e e v

arm

rotation

© www2.cs.uic.edu

16-Jan-19

Database System Concepts for Non-
Computer Scientists WS 2018/2019

<_

— arm assembly

Sector:
Unit to read or write,
1-8 KB

Track:
Formed of sectors of
equal size

Read Data from Disk

Seek Time: positioning of arm and head to the
track

Latency: Rotation to the beginning of the sector
2 rotation of the disk (on average)

Transfer Time: Transfer sector from disk to
main memory

Increasing range of disk transfer rates from the inner diameter
to the outer diameter of the disk

Random versus Chained IO

Random 1/O
Every time positioning of the arm, head, and rotation

Chained IO

Positioning, then read sectors track-wise

Chained IO is one to two maginitude faster
than random 1/O

- Need to consider this gap in algorithms!

Random versus Chained IO

Time to read 1000 blocks of size 8 KB?

ts:4ms; tr:2ms; ttr:o-1 ms, ttrack-to-track seek time:o-5mS
(63 sectors per track)

Random access:
t.g=1000 "t
=1000 " (t,+t. +t,)=1000*(4+2+0.1)
= 1000 *6.1 =6100 ms

Sequential access:
tseq = ts + 1:r + 1000 ° 1:tr +N* ttrack-to-trac:k seek time
=t,+t + 1000 * 0.1 + (16 * 1000)/63 * 0.5
=4+ 2+ 100 + 126 = 232 ms

Buffer Management

Main Memory

Database System Concepts for Non-

16-Jan-19 Computer Scientists WS 2018/2019

10

Fill and replace pages

® System buffer is divided in frames of equal size
® A frame can be filled with one page (block, sector)
® Overflow pages are swapped on disk

Main Memo

FrameS Database System Concepts for Non- Page
Computer Scientists WS 2018/2019

16-Jan-19 11

Addressing tuples on disk

4711 |2 —I

1 2 3
o|oo
5001 o Grundziige o ...
4052 o Logik o ...
= 5041 o Ethik o ...
Seite 4711

Database System Concepts for Non-

16-Jan-19 Computer Scientists WS 2018/2019

Moving within a page

16-Jan-19

TID

4711

7]

1 2 3
® ® ®
5001 o Grundziige o ...
~ 5041 o Ethik o ...
| 4052 o Mathematische
| Logiko ...
Seite 4711

dlddd>SE Oysielll LUIILEepPLS 1Vl INUIT=

Computer Scientists WS 2018/2019

13

Moving from one page to
another

TID

1 ?: 3
1eTt]

L» 5001 o Grundziige o ...

5041 o Ethik o ...

L \
Seite 4711

Y
12 3
ofefe]

4052 o Mathematische
L Logik fiir Informatiker o

Seite 4812

Database System Concepts for Non-

16-Jan-19 Computer Scientists WS 2018/2019

Moving from one page to
another

TID

5001 o Grundziige o ...

5041 o Ethik o ...

Seite 4711 ,
123

4052 o Mathematische
L Logik fiir Informatiker o

Seite 4812

Database System Concepts for Non-

16-Jan-19 Computer Scientists WS 2018/2019

Data Transfer

Simple query execution:
select * from students where studNr=26120;

Get one tuple after the other to the main memory
and evaluate predicates.

- Most expensive way ®

- Mostly only a small fraction of the tuples
fulfills the query

Index Structures

* |ndex structures are used to keep the data volume
to be transferred from disk to main memory small

* Only that part of the data which is really needed to
answer the query is transferred

* Two main indexing methods:
o Hierarchical (trees)
o Partitioning (Hashing)

IHierarchicaI Indexes

We consider two hierarchical index structures:
* ISAM (Index-Sequential Access Method)
e B-Trees

* |SAM is the predecessor of B-Trees

* Main idea: sort tuples on the indexed attribute
and create an index file on it

- Similar to a thumb index in a book &

16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019

18

Index pages

BENGgHEER

Sorted >
B dE
Page 1 Page 2 Page n

Datapages

Database System Concepts for Non-

16-Jan-19 Computer Scientists WS 2018/2019

Example cont.

Student with student number 13542 is searched

During query execution you go through the index
pages and look for the place where 13542 fits

From there you get the referenced data page

Advantage: Number of index pages is much less
than number of data pages, i.e. you save /O

You can also answer range queries, e.g. all StudNr
between 765 and 1232: find as a start the first fitting
data page for 765 and from there on you can go
sequentially through the data pages until StudNr
1232

Problems with ISAM

Simple and fast search but maintenance of index is

expensive:

* Inserting a tuple in a full data page: need to make
room in dividing data page into two - we need to
keep the sorting

* This creates a new entry on an index page

* Inserting an entry in a full index page leads to
shifting the entries to make room

» Although the number of index pages is smaller than
the number of data pages going through the index
pages can nevertheless take a long time

Advancement

|dea:

Why not have index pages for the index
pages”?

- This is in principle the idea of a B-Tree

Index pages

IB-Tree
H B

o H Riaolans sl M

Sorted >
= B B
Page 1 Page 2 Page n
Data pages

Database System Concepts for Non-

16-Jan-19 Computer Scientists WS 2018/2019

23

B-Trees

Trees in Informatics
. have nodes
. have edges
. have a root (at the top!)
. have leaves (at the bottom!)
. are often balanced
(otherwise in extreme cases rather a chain)

Root

Schematic depiction of a
balanced tree:

Leaves

Database System Concepts for Non-

16-Jan-19 Computer Scientists WS 2018/2019

24

Properties of a B-Tree

B-Tree of degree i has following properties:

« Every path from the root to a leaf has the same length

« Every node — except the root — has at least / and at
most 2/ entries (in the example above j=2)

« Entries in every node are sorted

« Every node — except the leaves — with n entries has
n+1 children

Properties of a B-Tree

e [et

pOJ k11 p11 kZ! R kni pn
be entries in a node (p; are page identifier, k; keys)

Then the following holds:

1. Sub-tree in p, contains only keys smaller than k;

2. p;has a sub-tree with keys between k; and ki+1

3. Sub-tree being referenced by p, contains only keys
greater than k,

Database System Concepts for Non-

16-Jan-19 Computer Scientists WS 2018/2019

26

INode Structure

Tree properties:
* One node is one page

« Tree is balanced

* Node utilization at least 50%

16-Jan-19 Database System Concepts for Non-

Computer Scientists WS 2018/2019

27

Insert Algorithm

w N

. Find the proper leaf node to insert new key

Insert key there

If node full

I. Divide node into two and extract median

ii. Insert all keys smaller than median into left node,
all keys greater than median into right node

lii. Insert median in parent node and adapt pointers

If parent node full

I. If root node then create new root node, insert median,
and adapt pointers

ii. Otherwise repeat 3. with parent node

Delete Algorithm

Read the literature or example on
lecture website

Gradual Assembly of a B-Tree
of Degree i=2

See;
https://db.in.tum.de/teaching/ws1819/DBSandere/BTreeExample.pdf

In the internet there are a number of animation programs
for B-Trees — no warranty!

https://www.cs.usfca.edu/~galles/visualization/BTree.html
looks quite good, but uses a different notation for the
maximal node size and does not handle node
underflows.

https://www.db.in.tum.de/teaching/ws1819/DBSandere/BTreeExample.pdf
https://www.cs.usfca.edu/~galles/visualization/BTree.html

B+-Trees

« Performance of a B-Tree heavily depends on height:
on average Iogk(n) page accesses to read one data
element
(k=degree of branching, n=number of indexed data
elements)

—> preferably high degree of branching of the inner
nodes

« Storing data in the inner nodes reduces branching
degree

« B+-Trees only store reference keys in inner nodes —
data itself is stored in leaf nodes

« Usually leaf nodes are bidirectionally linked in order to
enable fast sequential search

Structure B+-Tree

Page 1 Page 2 Page n

Data pages, sorted, bidirectionally linked

Database System Concepts for Non-

16-Jan-19 Computer Scientists WS 2018/2019

32

Prefix B+-Trees

* Further Improvement by use of prefixes of reference keys,
e.g. with long strings as keys
* You only have to find a reference key which separates the
left and the right sub-tree:
» Disestablishment <= E <Incomprehensibility
» Systemprogram <= ? < Systemprogrammer

Several Indexes on the

same Data
Primary index — Secondary index
Students
StudNr Name Semester
25403 Jonas 12
29120 Theophrastos 2
29555 Feuerbach 2
6

27550 Schopenhauer

When

* Index on StudNr?

* Index on Name?

* [ndex on Semester?

Secondary indexes

Primary index

Data pages, sorted,
bidirectionally linked

Index pages

Secondary index

Database System Concepts for Non-

16-Jan-19 Computer Scientists WS 2018/2019

35

DDL: Create Index

CREATE [UNIQUE] INDEX index_name
ON table _name (column_name1 [, column_name2, ...])

Example:

CREATE INDEX full_name
ON Person (Last_ Name, First Name)

Partitioning
What is Hashing?

* (to hash = zerhacken)
 Storing tuples in a defined memory area

* Hash function: mapping tuples (key values)
to a fixed set of function values (memory area)

* Optimal hash function:
o injective (no identical function values for different arguments)
o surjective (no waste of memory)

» Typical hash function h: h (x) =x mod N
set of function values thereby {0,..., N-1}

Example Hashing

« Example hash function h(x) = x mod 3

0

1 (27550, 'Schopenhauer’, 6)

2 (24002, 'Xenokrates’, 18)
(25403, 'Jonas’, 12)

Collisions

Collision handling

0

1

(27550, 'Schopenhauer’, 6)

2

(24002, "Xenokrates’, 18)

(25403, 'Jonas’, 12)

(26120, *Fichte’, 10)

(28106, 'Carnap’, 3)

Inefficiently with not forseen quantity of data
Way out: extensible (dynamic) Hashing
-> further indirection via directory

Advantages / Disadvantages
Hashing

+ Few accesses to external storage
constant cost: O(1), generally 1-2
+ Simple implementation

— Collision handling necessary

- Pre-allocation of memory area

- Not dynamic resp. only with adjustment
- No range queries, only point queries

Interleaved Storing

Seite P;

2125 o Sokrates oCdo 226 e

5041 o Ethik o 402125 e

5049 o Maeutik o 202125 .

. Seite Py

4052 o Logik o 402125 - -

2126 o Russel o Cho 232 2133 o Popper - oW o2

9043 o Erkenntnistheorie o 302126 e 52?9 > Der Wl,ener Kreis < 2 ; 2'133 *

5052 o Wissenschaftstheorie o 3 o 2126 21340 Augustinus 0 30 309

5916 o Bioethik D 2091 e 5022 o Glaube und Wissen o 202134 e
2137 o Kant oCdo Te
5001 o Grundziige o 402137 e
4630 o Die 3 Kritiken o 402137e

Database System Concepts for Non-

16-Jan-19 Computer Scientists WS 2018/2019

41

