
Yorrick Müller | MILC: Inverted List Compression In Memory 1

MILC: Inverted List Compression in Memory

Yorrick Müller
Garching, 3rd December 2018

Yorrick Müller | MILC: Inverted List Compression In Memory 2

Introduction – Inverted Lists

● Inverted list := Series of sorted integers, no duplicates allowed

● Can be used as index

● Used in search engines, graph analytics and more

● Can be used in sort merge joins

● Compression reduces memory footprint and disk I/O

Yorrick Müller | MILC: Inverted List Compression In Memory 3

Common Approach

● Only store the difference between an element and its predecessor

● Use fewer bits to encode the difference

– No point access possible without decompressing the whole list

– Not well suited for SIMD

Yorrick Müller | MILC: Inverted List Compression In Memory 4

MILC – General Idea

Divide the data into blocks

For each block:

1) Save first value of the block uncompressed (= skip pointer)
2) Store only the difference between the remaining values and the

 skip pointer

→ Allows point access without decompressing the whole sequence

Yorrick Müller | MILC: Inverted List Compression In Memory 5

MILC – General Idea

1 10 15
0 9 15
3 3 3
3 2 4

Skip Pointer
Address
#Elements
Bits used

1 4 7 1 2 3 2 4 9

32 Bit
32 Bit
8 Bit
8 Bit

Uncompressed Values: 1, 2, 5, 8, 10, 11, 12, 13, 15, 17, 19, 24 (36 B)
Compressed: ~ 34 B

Yorrick Müller | MILC: Inverted List Compression In Memory 6

MILC – First Optimization

Make the size of each block dynamic

Theorem:
A block with more than 160 elements can be stored more efficiently
when split into smaller blocks

Approach:
– Use dynamic programming to solve an optimization problem
– Only block sizes from 1 to 160 need to be considered

=> Higher compression ratio

Yorrick Müller | MILC: Inverted List Compression In Memory 7

MILC – General Idea

1 10
0 9
3 7
3 4

Skip Pointer
Address
#Elements
Bits used

1 4 7 14

32 Bit
32 Bit
8 Bit
8 Bit

Uncompressed Values: 1, 2, 5, 8, 10, 11, 12, 13, 15, 17, 19, 24 (36 B)
Compressed: ~ 25 B

1 2 3 5 7 9

Yorrick Müller | MILC: Inverted List Compression In Memory 8

MILC – Second Optimization

Subdivide blocks into sub blocks

Per block:
– Find optimal n
– Add a mini skip pointer every n elements
– Store only the difference of the remaining elements and their

mini skip pointer

=> Higher compression ratio

Yorrick Müller | MILC: Inverted List Compression In Memory 9

MILC – Second Optimization

3 4 6 10 11 12 13 141

1 10 2 3 5 12

#Sub Blocks

Mini Skip Pointer

2 3 43

Number of Bits used

Yorrick Müller | MILC: Inverted List Compression In Memory 10

MILC – Third Optimization

Arrange skip pointers in a linearized B-tree like fashion

Make each node 16 elements large s.t. each node is stored in
exactly one cache line

→ Fewer cache lines accessed when searching for elements

Yorrick Müller | MILC: Inverted List Compression In Memory 11

MILC – Third Optimization

107

63 98

21 54

1211

7 63 8 9 11 12 1 2 4 510

Reordering the values 1 through 12:

Yorrick Müller | MILC: Inverted List Compression In Memory 12

MILC – How do we Search in this Data Structure?

Search(x) :=

1) Search last element s <= x in the skip pointer tree
2) Find the last mini skip pointer q <= x - s in the block
3) Search for the value x - s - q in the corresponding sub block
4) The element is contained in the sequence iff it is found in any of

 those steps

Yorrick Müller | MILC: Inverted List Compression In Memory 13

MILC – Fourth Optimization

Search the tree nodes using SIMD (AVX2 in my case)

– Compare all keys in the node with the searched value
– Count the amount of set bits in the resulting bitmask

→ Number of bits set = index of the child node to descent to

31 4 5

44 4 4

11 0 0

≤

=

31 5 9

2 Bits set

Search here

0 1 2 3 4

Yorrick Müller | MILC: Inverted List Compression In Memory 14

Pareto Distribution

● Continuus counterpart to the Zipf distribution

● Low values more probable than high values

● P [X=x] Θ(1/x²) for k=1, m=1) for k=1, m=1∈ Θ(1/x²) for k=1, m=1
(given my discretization)

● Pr[X < x] = 1 – (m/x)k [2]

Src: https://upload.wikimedia.org/wikipedia/commons/d/d9/Pareto_distributionPDF.png

Yorrick Müller | MILC: Inverted List Compression In Memory 15

MILC – Test Setup

Inverted list generated by summing up the values generated by a
discretized Pareto distribution

→ Most elements differ only slightly, some differ greatly

Generate a sequence of elements to lookup and then loop this
sequence (→ don‘t measure the time it takes to generate random
numbers)

Yorrick Müller | MILC: Inverted List Compression In Memory 16

MILC – Approaches

UncompressedMilc := Uncompressed inverted list
StaticMilc := MILC with fixed block sizes
DynamicMilc := StaticMilc + dynamic block sizes
MiniSkipMilc := DynamicMilc + mini skip pointers
TreeMilc := MiniSkipMilc + reordered skip pointers
SimdMilc := TreeMilc + SIMD search
UncompressedSimdMilc := Uncompressed inverted list reordered

 and searched with SIMD

Yorrick Müller | MILC: Inverted List Compression In Memory 17

MILC – Compression Efficiency

Yorrick Müller | MILC: Inverted List Compression In Memory 18

MILC – Compression Throughput

Yorrick Müller | MILC: Inverted List Compression In Memory 19

MILC – Contains Throughput

Yorrick Müller | MILC: Inverted List Compression In Memory 20

MILC – Perfomance Impact

Yorrick Müller | MILC: Inverted List Compression In Memory 21

Conclusion

● Gives good compression ratios on the test data (about 1:3.7 with
k=1)

● Higher performance than an uncompressed sorted list on large
datasets (given the tested distribution)

● SIMD-Tree optimization also very useful on uncompressed data

Yorrick Müller | MILC: Inverted List Compression In Memory 22

Lehrstuhl für Musterverfahren
Fakultät für Mustertechnik
Technische Universität München

Thank you for your attention

Yorrick Müller | MILC: Inverted List Compression In Memory 23

Sources

[1] Wang, Jianguo, et al. "MILC: inverted list compression in
memory." Proceedings of the VLDB Endowment 10.8 (2017): 853-
864.

[2] Adamic, Lada A. "Zipf, power-laws, and pareto-a ranking tutorial."
Information Dynamics Lab, HP Labs, Palo Alto, CA,
http://ginger.hpl.hp.com/shl/papers/ranking/ranking.html (2000).

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23

