
244

Code Generation for Data Processing
Lecture 8: Register Allocation

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology

Technical University of Munich

Winter 2024/25

245

Register Allocation

▶ Map unlimited/virtual registers to limited/architectural registers

▶ Assign a register to every value
▶ Outputs get a (new) register, input operands often require registers

▶ When running out of registers, move values to stack
▶ Stack spilling – save value register from to stack memory

▶ ϕ-nodes: ensure all inputs are assigned to same location

▶ Goal: produce correct code, minimize extra load/stores
▶ Regalloc affects performance in orders of magnitude

246

Register Allocation: Overview Example

gauss(%0) {
%2 = SUBXri %0, 1
%3 = MADDXrrr %0, %2, 0
%4 = MOVXconst 2
%5 = SDIVrr %3, %4
ret %5

}

gauss(%0 : X0) {
%2 = SUBXri %0, 1 : X1
%3 = MADDXrrr %0, %2, 0 : X0
%4 = MOVXconst 2 : X1
%5 = SDIVrr %3, %4 : X0
ret %5

}

▶ May also insert copy and stack spilling instructions

247

Simplest thing that could possibly work

▶ Idea: allocate a one stack slot for every SSA variable/argument

▶ Load all instruction operands into registers right before
▶ Perform instruction
▶ Write result back to stack slot for that SSA variable

+ Simple, always works, debugging easy
− Extremely inefficient in time and space

248

Regalloc Example 1

gauss(%0)
%2 = SUBXri %0, 1
%3 = MADDXrrr %0, %2, 0
%4 = MOVXconst 2
%5 = SDIVrr %3, %4
ret %5

gauss(%0 : X0)
%spills = alloca 40
STRXi %0, %spills, 0
%l0 = LDRXi %spills, 0 : X0
%2 = SUBXri %0%l0, 1 : X0
STRXi %2, %spills, 8
%l1 = LDRXi %spills, 0 : X0
%l2 = LDRXi %spills, 8 : X1
%3 = MADDXrrr %l1, %l2, 0 : X0
STRXi %3, %spills, 16
%4 = MOVXconst 2 : X0
STRXi %4,i %spills, 24
%l3 = LDRXi %spills, 16 : X0
%l4 = LDRXi %spills, 24 : X1
%5 = SDIVrr %l3, %l4 : X0
STRXi %5, %spills, 32
%l5 = LDRXi %spills, 32 : X0
ret %l5

249

Handling PHI Nodes

▶ ϕ-node needs to become register or stack slot
▶ Simplest thing that could possibly work: PHI becomes stack slot

▶ Remember: ϕ-nodes are executed on the edge

▶ Idea: predecessors write their value to that location at the end
▶ First pass: define/allocate storage for ϕ-node, but ignore inputs
▶ Second pass: insert move operations at end of predecessors

250

Regalloc Example 2

identity(%0)
br %2

2:
%3 = phi [0, %1], [%4, %2]
%4 = ADDXri %3, 1
%5 = CMPXrr_BLS %4, %0
br %5, %2, %6

6:
ret %3

Pass 12

▶ Original value lost in %6!

identity(%0 : X0)
%spills = alloca 24
STRXi %0, %spills, 0
%c0 = MOVXconst 0 : X0
STRXi %c, %spills, 8
br %2

2:%3 = phi [0, %1], [%4, %2]
%l0 = LDRXi %spills, 8 : X0
%4 = ADDXri %l0, 1 : X0
STRXi %4, %spills, 16
%l4 = LDRXi %spills, 16 : X0
STRXi %l4, %spills, 8
%l1 = LDRXi %spills, 16 : X0
%l2 = LDRXi %spills, 0 : X1
%5 = CMPXrr_BLS %l1, %l2
br %5, %2, %6

6:%l3 = LDRXi %spills, 8 : X0
ret %l3

251

Critical Edges

▶ Critical edge: edge from block with mult. succs. to block with mult. preds.
▶ Problem: cannot place move on such edges

▶ When placing in predecessor, they would also execute for other successor
⇒ unnecessary and – worse – incorrect

→ →

▶ Break critical edges: insert an empty block

252

Regalloc Example 2 – Attempt 2

identity(%0)
br %2

2:
%3 = phi [0, %1], [%4, %6]
%4 = ADDXri %3, 1
%5 = CMPXrr_BLS %4, %0
br %5, %6, %7

6:
br %2

7:
ret %3

Pass 12

identity(%0 : X0)
%spills = alloca 24
STRXi %0, %spills, 0
%c0 = MOVXconst 0 : X0
STRXi %c, %spills, 8
br %2

2:%3 = phi [0, %1], [%4, %6]
%l0 = LDRXi %spills, 8 : X0
%4 = ADDXri %l0, 1 : X0
STRXi %4, %spills, 16
%l1 = LDRXi %spills, 16 : X0
%l2 = LDRXi %spills, 0 : X1
%5 = CMPXrr_BLS %l1, %l2
br %5, %6, %7

6:%l4 = LDRXi %spills, 16 : X0
STRXi %l4, %spills, 8
br %2

7:%l3 = LDRXi %spills, 8 : X0
ret %l3

253

Handling Critical Edges

Breaking Edges

▶ Insert new block for moves

+ Simple, no analyses needed
− Bad performance in loops

r1 ← 0

r2 ← r1 + 1 r1 ← r2

r3 ← r1 + x

Copy Used Values

▶ Move values still used to new reg.

+ Performance might be better
− Needs more registers

r1 ← 0

r2 ← r1 + 1
rT ← r1
r1 ← r2

r3 ← rT + x

254

Regalloc Example 3
odd(%0)

br %2
2:

%3 = phi [%0, %1], [%8, %7]
%4 = phi [1, %1], [%5, %7]
%5 = phi [0, %1], [%4, %7]
%6 = CBNZX(%3)
br %6, %7, %9

7:
%8 = SUBXri %3, 1
br %2

9:
ret %4

▶ Value of ϕ node lost!

odd(%0 : X0)
%spills = alloca 40
STRXi %0, %spills, 0
%l3 = LDRXi %spills, 0 : X0; STRXi %l3, %spills, 8
%c0 = MOVXconst 1 : X0; STRXi %c0, %spills, 16
%c1 = MOVXconst 0 : X0; STRXi %c1, %spills, 16
br %2

2:%3 = phi [%0, %1], [%8, %7] // spills+8
%4 = phi [1, %1], [%5, %7] // spills+16
%5 = phi [0, %1], [%4, %7] // spills+24
%l0 = LDRXi %spills, 8 : X0
%6 = CBNZX(%l0)
br %6, %7, %9

7:%l1 = LDRXi %spills, 8 : X0
%8 = SUBXri %l2, 1 : X0; STRXi %8, %spills, 32
%l4 = LDRXi %spills, 40 : X0; STRXi %l4, %spills, 8
%l5 = LDRXi %spills, 24 : X0; STRXi %l5, %spills, 16
%l6 = LDRXi %spills, 16 : X0; STRXi %l6, %spills, 24
br %2

9:%l2 = LDRXi %spills, 24 : X0
ret %l2

255

PHI Cycles

▶ Problem: ϕ-nodes can depend on each other
▶ Can be chains (ordering matters) or cycles (need to be broken)
▶ Note: only ϕ-nodes defined in same block are relevant/problematic

ϕ1 ϕ2 ϕ3

ϕ1 ϕ2

ϕ3ϕ4

ϕ1 ϕ2

ϕ3ϕ4

ϕ1 = ϕ(ϕ2, . . .)
ϕ2 = ϕ(ϕ3, . . .)
ϕ3 = ϕ(v , . . .)

ϕ1 = ϕ(ϕ2, . . .)
ϕ2 = ϕ(ϕ3, . . .)
ϕ3 = ϕ(ϕ4, . . .)
ϕ4 = ϕ(ϕ1, . . .)

ϕ1 = ϕ(ϕ2, . . .)
ϕ2 = ϕ(ϕ3, . . .)
ϕ3 = ϕ(ϕ1, . . .)
ϕ4 = ϕ(ϕ1, . . .)

256

Handling PHI Cycles

1. Compute number of other ϕ nodes reading other ϕ on same edge
2. For each ϕ with 0 readers: handle node/chain

▶ No readers ⇝ start of chain
▶ Handling node may unblock next element in chain

3. For all remaining ϕ-nodes: must be cycles, reader count always 1
▶ Choose arbitrary node, load to temporary register, unblock value
▶ Handle just-created chain
▶ Write temporary register to target

Resolving ϕ cycles requires an extra register (or stack slot)

257

Regalloc Example 3 – Attempt 2

Edge %1 → %2 Edge %7 → %2

Critical ϕ:
▶ %4 #readers: 10 –

broken
▶ %5 #readers: 10

Action: break %4

odd(%0 : X0)
%spills = alloca 40
STRXi %0, %spills, 0
%l3 = LDRXi %spills, 0 : X0; STRXi %l3, %spills, 8
%c0 = MOVXconst 1 : X0; STRXi %c0, %spills, 16
%c1 = MOVXconst 0 : X0; STRXi %c1, %spills, 16
br %2

2:%3 = phi [%0, %1], [%8, %7] // spills+8
%4 = phi [1, %1], [%5, %7] // spills+16
%5 = phi [0, %1], [%4, %7] // spills+24
%l0 = LDRXi %spills, 8 : X0
%6 = CBNZX(%l0)
br %6, %7, %9

7:%l1 = LDRXi %spills, 8 : X0
%8 = SUBXri %l2, 1 : X0; STRXi %8, %spills, 32
%l4 = LDRXi %spills, 40 : X0; STRXi %l4, %spills, 8
%l5 = LDRXi %spills, 24 : X1
%l6 = LDRXi %spills, 16 : X0; STRXi %l6, %spills, 24
STRXi %l5, %spills, 16
br %2

9:%l2 = LDRXi %spills, 24 : X0
ret %l2

258

SSA Destruction

fn(%0, %1) {
b1:

%2 = add %0, %1
br %b2

b2:
%3 = phi [%b1: %1], [%b3: %4]
%4 = phi [%b1: %0], [%b3: %3]
%5 = phi [%b1: %2], [%b3: %3]
%6 = phi [%b1: 0], [%b3: %8]
%7 = icmp lt %3, %6
br %7, %b3, %b4

b3:
%8 = add %6, 1
%9 = icmp gt %8, %1
br %9, %b4, %b2

b4:
%10 = phi [%b2: %4], [%b3, %3]
%11 = phi [%b2: %5], [%b3, %8]
%12 = add %10, %11
ret %12

}

1. Dependencies between ϕ-nodes?

2. Critical Edges? (Draw CFG)

3. Destruct SSA into form with
unlimited registers.
3.1 ... by breaking critical edges
3.2 ... by copying used values

259

Better Register Allocation

▶ Goal: keep as many values in registers as possible
▶ Less stack spilling ⇒ better performance

▶ Problem: register count (severely) limited
⇝ Are there enough registers? (otherwise: spilling)
⇝ Which register to choose?
⇝ Which register to kill and put on the stack?

▶ Needs information when value is actually needed

260

Interlude: Register Allocation Research – Executive Summary

▶ Tons of papers exist
▶ Papers often skip over important details

▶ E.g., when spilling – using the value needs another register
▶ E.g., temporary register for shuffling values

▶ Additional (ISA) constraints in practice: (incomplete list)

▶ 2-address instructions with destructive source
▶ Fixed registers for specific instructions
▶ Computing the stack address may need yet another register
▶ Different register classes, often just handled independently

▶ Implementations even of simple algorithms tend to be large and complex

261

Liveness Analysis – Definitions

▶ Live: value still used afterwards
▶ After last (possible) use in program flow, the value becomes dead

▶ Live ranges: set of ranges in program where value is live
▶ Not necessarily contiguous, e.g. in case of branches

▶ Live interval: over-approximation of live ranges without holes
▶ Depends on block order, reverse post-order often a good choice

▶ Live-in/Live-out: values live at begin/end of basic block
▶ For ϕ nodes: ϕ is live-in, operands are live-out in predecessors

(Note: different literature uses different definitions)

262

Liveness Analysis – Example

a = ...
b = ...
c = ...
if (...)

d1 = a + 1 d2 = a + b

d = ϕ(d1, d2)

return c + d

a
b
c

d1 d2

d

live-in: ∅

live-out: a, b, c

live-in: a, c
live-out: c, d1

live-in: a, b, c
live-out: c, d2

live-in: c, d

live-out: ∅

263

Liveness Analysis – Example – Live Ranges vs. Live Intervals

a = ...
b = ...
c = ...
if (...)

d1 = a + 1 d2 = a + b

d = ϕ(d1, d2)

return c + d

a
b
c

d1 d2

d

a = ...
b = ...
c = ...
if (...)
d1 = a + 1
goto ...

d2 = a + b
goto ...

d = ϕ(d1, d2)

return c + d

a
b
c

d1

d2

d

▶ Live intervals are substantially worse, but easier to compute

264

Liveness Analysis – Algorithm39

▶ Iterate over blocks in post-order
▶ live ← ∪s.liveIn \ s.phis, s ∈ b.successors
▶ live ← live ∪ {ϕ.input(b)|ϕ ∈ b.successors.phis}
▶ b.liveOut ← live
▶ ∀v ∈ live : ranges[v].add(b.start, b.end)
▶ For each non-ϕ instruction inst in reverse order

▶ live ← (live ∪ inst.ops) \ {inst}
▶ ranges[inst].setStart(inst)
▶ ∀op ∈ inst.ops : ranges[op].add(b.start, inst)

▶ b.liveIn← live ∪ b.phis

▶ Repeat until convergence38

38Reducible graphs: expanding liveIn of loop headers to the entire loop suffices
39Adapted from C Wimmer and M Franz. “Linear scan register allocation on SSA form”. In: CGO. 2010, pp. 170–179.

265

Liveness Analysis – Example

a1 = ...

b1 = ...
c = ...

a2 = ϕ(a1, a3)

b2 = ϕ(b1, b3)

if (b2 < c)

a3 = a2 + b2

b3 = b2 + 1

return a2

266

Liveness Analysis – Example

fn(%0, %1) {
b1:

%2 = add %0, %1
br %b2

b2:
%3 = phi [%b1: %1], [%b3: %4]
%4 = phi [%b1: %0], [%b3: %3]
%5 = phi [%b1: %2], [%b3: %3]
%6 = phi [%b1: 0], [%b3: %8]
%7 = icmp lt %3, %6
br %7, %b3, %b4

b3:
%8 = add %6, 1
%9 = icmp gt %8, %1
br %9, %b4, %b2

b4:
%10 = phi [%b2: %4], [%b3, %3]
%11 = phi [%b2: %5], [%b3, %8]
%12 = add %10, %11
%13 = add %12, %2
ret %13

}

1. Compute live ranges of every SSA
value

267

Register Allocation Decisions (Outline)

▶ Question: are there enough registers for all values?
▶ Register pressure = number of values live at some point
▶ Register pressure > #registers ⇒ move some values to stack (spilling)

▶ Question: when spilling, which values and where to store/reload?
▶ Spilling is expensive, so avoid spilling frequently used values

▶ Question: for unspilled values, which register to assign?
▶ Also: respect register constraints, etc.

268

Register Allocation Strategies

Scan-based

▶ Iterate over the program
▶ Decide locally what to do
▶ Greedily assign registers

Graph-based

▶ Compute interference graph
▶ Nodes are values
▶ Edge ⇒ live ranges overlap

▶ Holistic approach

+ Fast, good for straight code
− Code quality often bad
▶ Used for -O0 and JIT comp.

+ Often generate good code
− Expensive, superlinear run-time
▶ Used for optimized code

269

Linear Scan Register Allocation40

▶ Idea: treat whole function as single block
▶ Block order affects quality (but not correctness)
▶ Only consider live intervals without holes

▶ Iterate over instructions from top to bottom
▶ For operands of instruction in their last use: mark register as free
▶ Assign instruction result to new free register

▶ If no free register available: move some value to the stack
▶ Heuristic: value whose liveness ends furthest in future

40M Poletto and V Sarkar. “Linear scan register allocation”. In: TOPLAS 21.5 (1999), pp. 895–913.

270

Linear Scan Register Allocation

+ low compile-time, simple
− very suboptimal code, live intervals grossly over-approximated

▶ What’s missing?
▶ Registers to load spilled values
▶ Shuffling of values between blocks
▶ Register constraints (e.g., for instructions or function calls)

▶ Other disadvantage: once a value is spilled, it is spilled everywhere
▶ Some other approaches based on lifetime splitting41

▶ Function calls: clobber lots of registers

41O Traub, G Holloway, and MD Smith. “Quality and speed in linear-scan register allocation”. In: SIGPLAN 33.5 (1998),
pp. 142–151. .

https://dl.acm.org/doi/pdf/10.1145/277652.277714

271

Scan-based Register Allocation44

Iterate over basic blocks42

▶ Start with register assignment from predecessor
▶ Multiple predecessors: choose assignment from any one
▶ ϕ-nodes can either reside in registers or on the stack

▶ Iterate over instructions top-down
▶ Ensure all instruction operands are in registers

▶ When out of registers: move any value to stack
▶ For operands in their last use: mark register as free
▶ Assign instruction result to new free register

▶ Shuffle values back into registers where successor expects them43

42Typically: reverse post-order, so most predecessors are seen before successors, except for loops.
43Without critical edges, only relevant for blocks with one successor — others are visited afterwards by RPO definition.
44Mostly following Go: https://github.com/golang/go/blob/5f7abe/src/cmd/compile/internal/ssa/regalloc.go

https://github.com/golang/go/blob/5f7abe/src/cmd/compile/internal/ssa/regalloc.go

272

Scan-based Register Allocation – Spilling

What to spill?
▶ Spill value with furthest use in future45

▶ Frees register for longest time
▶ Requires information on next use to be stored during analysis
▶ But: avoid spilling values computed inside loops (esp. loop-carried

dependencies), reloads are fine46

▶ Downside: superlinear run-time

Where to store?
▶ Stack, period.
▶ Spilling to FP/vector registers. . . occasionally proposed, not used in practice

45C Wimmer and H Mössenböck. “Optimized interval splitting in a linear scan register allocator”. In: VEE. 2005, pp. 132–141.
46Intel Optimization Reference Manual (Aug. 2023), Assembly/Compiler Coding Rules 38 and 45

273

Scan-based Register Allocation – Spilling

Where to insert store?
▶ Option 1: spill exactly where required

▶ Downside: multiple spills of same value, many reloads
▶ Option 2: spill once, immediately after computation

▶ Later “spills” to the stack are less costly
▶ May lead to spills on code paths that don’t need it

▶ Option 3: compute best place using dominator tree
▶ Spill store must dominate all subsequent loads

274

Scan-based Register Allocation – Register Assignment

▶ Merge blocks: choose predecessor with most values in registers
▶ High likelihood of reducing the number of stores
▶ Re-loads are pushed into predecessors

▶ Propagate register constraints bottom-up as hints first
▶ E.g.: call parameters, instruction constraints, assignment for merge block
▶ Reduces number of moves

275

Graph Coloring Approaches

+ Considerably better results than greedy algorithms
− High run-time, even with heuristics

▶ Graph coloring in general is NP-complete
▶ Often used in compilers (e.g., GCC, WebKit)

AD IN2053 “Program Optimization” covers this more formally

276

Stack Frame Allocation
▶ Optionally setup frame pointer

▶ Required for variably-sized stack frame
Otherwise: cannot access spilled variables or stack parameters

▶ Optionally re-align stack pointer

▶ Save callee-saved registers, maybe also link register
▶ Optionally add code for stack canary

▶ Compute stack frame size and adjust stack pointer
▶ Mainly size of allocas, but needs to respect alignment
▶ Ensure sufficient space for parameters passed on the stack
▶ Ensure stack pointer is sufficiently aligned

▶ Stack pointer adjustment may be omitted for leaf functions
▶ Some ABIs guarantee a red zone

277

Block Ordering

▶ Order blocks to make use of fall-through in machine code
▶ Avoid sequences of b.cond; b

▶ Sometimes cannot be avoided: conditional branches often have shorter range

▶ Block ordering has implications for branch prediction
▶ Forward branches default to not-taken, backward taken
▶ Unlikely blocks placed “out of the way” of the main execution path
▶ Indirect branches are predicted as fall-through

278

Register Allocation – Summary

▶ Map unlimited virtual registers to restricted register set
▶ Responsible for:

▶ Assigning registers to values
▶ Deciding which registers to spill to stack
▶ Deciding when to spill/unspill values

▶ ϕ-nodes require extra care, esp. for chains and cycles
▶ Liveness information is key information for register allocation
▶ Scan-based approaches are fast, but lead to suboptimal code
▶ Graph coloring yields better results, but is much slower
▶ Register allocation/spilling heavily relies on heuristics in practice

279

Register Allocation – Questions

▶ Why is register allocation a difficult problem?
▶ How are ϕ-nodes handled during register allocation?
▶ What are the two main problems when destructing ϕ-nodes?
▶ Why are critical edges problematic and how to deal with them?
▶ What are practical constraints for register allocation?
▶ How to detect whether a value is still needed at some point?
▶ How to compute the live ranges of values in an SSA-based IR?
▶ What is the idea of linear scan and what are its practical problems?

	Register Allocation
	Avoiding Register Allocation
	Handling PHI Nodes
	Better Register Allocation
	Generating Assembly
	Summary

