
286

Concepts of C++ Programming
Lecture 8: Containers and Iterators

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology

Technical University of Munich

Winter 2024/25



287

std::optional105

▶ std::optional<T> (<optional>): value that might not exist
▶ Can be empty (no value) or non-empty (holding a value)
▶ Implicit conversion to bool, access contained value with * or ->

std::optional<std::string> mightFail(unsigned arg) {
if (arg < 7) {
return "lt␣7"; // equiv to: std::optional<std::string>("lt 7")

} else {
return std::nullopt; // alternatively: return {};

}
}
void foo(unsigned n) {
if (auto optStr = mightFail(n))
std::println("{}", optStr->size()); // prints: 4

}

105https://en.cppreference.com/w/cpp/utility/optional

https://en.cppreference.com/w/cpp/utility/optional


288

Optional Reference

Quiz: What is the most efficient way to return an optional reference?

A. std::optional<Foo&>
B. std::optional<Foo*>
C. std::optional<std::reference_wrapper<Foo>>
D. Foo*



289

std::pair106

▶ std::pair<T, U> (<utility>): pair of two values
▶ Members can be accessed with first and second
▶ Constructible with constructor or std::make_pair

std::pair<int, double> p1(123, 4.56);
p1.first; // == 123
p1.second; // == 4.56
auto p2 = std::make_pair(456, 1.23);
// p2 has type std::pair<int, double>
p1 < p2; // true

106https://en.cppreference.com/w/cpp/utility/pair

https://en.cppreference.com/w/cpp/utility/pair


290

std::tuple107

▶ std::tuple<...> (<utility>): tuple of n values
▶ Members can be accessed with std::get<i>()
▶ Constructible with constructor or std::make_tuple

std::tuple<int, double, char> t1(123, 4.56, ’x’);
std::get<1>(t1); // == 4.56
auto p2 = std::make_tuple(456, 1.23, ’y’);
// p2 has type std::tuple<int, double, char>
p1 < p2; // true

107https://en.cppreference.com/w/cpp/utility/tuple

https://en.cppreference.com/w/cpp/utility/tuple


291

Structured Bindings108

▶ auto [a, b] = t; initialized with std::get<0>(t) and std::get<1>(t)
▶ Also with auto& and const auto& for references to elements

auto t = std::make_tuple(1, 2, 3);
auto [a, b, c] = t; // a, b, c have type int
auto p = std::make_pair(4, 5);
auto& [x, y] = p; // x, y have type int&
x = 123; // p.first is now 123

108https://en.cppreference.com/w/cpp/language/structured_binding

https://en.cppreference.com/w/cpp/language/structured_binding


292

Using Pair/Tuple

▶ Pair/tuple convey no information about semantics
▶ User-defined types often preferable, esp. in public interfaces
⇒ Use std::pair/std::tuple sparingly

struct Rational {
long numerator;
long denominator;

};
std::pair<long, long> canonicalize(long, long); // BAD
Rational canonicalize(const Rational&); // BETTER



293

std::variant109

▶ Type which holds exactly one of the alternative types
▶ Type-safe, alternative share same underlying storage ⇝ smaller size
▶ Accessible with std::get, std::holds_alternative

std::variant<int, double> v; // holds either an int or a double

v = 42; // now holds an int
assert(std::holds_alternative<int>(v));
assert(std::get<int>(v) == 42);

v = 1.0; // now holds a double
// get_if returns pointer to active value, or nullptr
assert(*std::get_if<double>(&v) == 1.0);
assert(std::get_if<int>(&v) == nullptr);

109https://en.cppreference.com/w/cpp/utility/variant

https://en.cppreference.com/w/cpp/utility/variant


294

Iterators110

▶ Standard library provides various containers, code might define custom ones

▶ Problem: different containers can have different access methods
⇝ containers not easily exchangable

▶ Solution: abstract over element access with iterators
▶ Same pointer-like interface for all containers

⇒ Allows for easy exchange of container type
▶ Very useful in templates specialized on containers

▶ Containers define:
▶ begin() – iterator pointing to first element
▶ end() – iterator pointing to the first element after the container

110https://en.cppreference.com/w/cpp/iterator

https://en.cppreference.com/w/cpp/iterator


295

Iterators: Usage Example

#include <array>
#include <print>
int main() {
std::array<int, 2> arr{1, 2};
auto it = arr.begin();
assert(*it == 1);
++it; // prefer pre-increment
assert(*it == 2);
++it;
assert(it == arr.end()); // end iterator not dereferencable (UB)

for (auto it = arr.begin(); end = arr.end(); it != end; ++it)
std::println("{}", *it);

}



296

Range-Based for Loop111

▶ for-range loop is syntactic sugar for:
▶ Calling begin() and end() of the range
▶ Looping until the iterator equals the end iterator
▶ Defining variables inside the loop body from the iterator

#include <array>
#include <print>
int main() {
std::array<int, 2> arr{1, 2};
for (int& x : arr)
x += 5;

// ... is identical to:
for (auto it = arr.begin(); end = arr.end(); it != end; ++it) {
int& x = *it;
x += 5;

}
}
111https://en.cppreference.com/w/cpp/language/range-for

https://en.cppreference.com/w/cpp/language/range-for


297

Input/Output Iterator

▶ Concepts: std::input_iterator/std::output_iterator
▶ Required features:

▶ it1 == it2 – whether iterators point to the same position
▶ *it, it-> – dereferencing
▶ ++it, it++ – incrementing
▶ Input iterator: dereferenced iterator can only be read
▶ Output iterator: dereferenced iterator can only be written to

▶ Single-pass only: not decrementable, two iterators might yield different
values



298

Forward/Bidirectional Iterator

▶ Concepts: std::forward_iterator/std::bidirectional_iterator

▶ Forward iterator – required features:
▶ All features shared by input/output iterator
▶ Multi-pass guarantee: it1 == it2 implies ++it1 == ++it2

▶ Bidirectional iterator – forward iterator with:
▶ --it, it-- – decrementing (walking backwards)



299

Random Access/Contiguous Iterator

▶ Concepts: std::random_access_iterator/std::contiguous_iterator

▶ Random access iterators – bidirectional iterator with:
▶ it[] – random access
▶ Relational operators, e.g. it1 < it2
▶ Incrementable/decrementable by any amount, e.g. it + 2, it -= 5

▶ Contiguous iterator – random access iterator with:
▶ Elements are stored contiguously in memory
▶ &*(it + n) equivalent to (&*it) + n



300

Implementing Iterators for a Linked List

(see script)



301

Insertion and Removal

▶ Containers generally use iterators for removing elements
▶ Already have some handle to the element ⇝ use it
▶ Especially important for data structures with non-O(1) access
▶ Typically: erase(iterator)

▶ Likewise: insertion at a specific point
▶ Important: might invalidate the used or some/all other iterators!

How to remove elements from a singly-linked list?
No back pointers – how to update previous next pointer?



302

Containers in Standard Library: Overview

▶ Container: object that stores collection of other objects
▶ Types of elements specified as template parameter(s)

▶ Sequential: optimized for sequential access
▶ E.g., std::array, std::vector, std::list

▶ Associative: sorted, optimized for search (O(log n))
▶ E.g., std::set, std::map

▶ Unordered associative: hashed, optimized for search (O(n), amortized O(1))
▶ E.g., std::unorderd_set, std::unorderd_map



303

std::vector112

▶ Array that can dynamically grow size
▶ Elements stored contiguously in memory, access via data()
▶ Preallocates memory for a certain amount of elements (capacity)

▶ Default: exponential growth; can reserve() to reduce reallocations

▶ Random access: O(1)
▶ Insert/remove at end: O(1) (amortized)
▶ Insert/remove at other position: O(n)

112https://en.cppreference.com/w/cpp/container/vector

https://en.cppreference.com/w/cpp/container/vector


304

std::vector Example
std::vector<int> fib = {1,1,2,3};
assert(fib[1] == 1);
int* fib_ptr = fib.data();
assert(fib_ptr[2] == 2);
fib[3] = 43;
fib.data()[1] = 41; // fib is now 1, 41, 2, 43

fib.push_back(5); // fib is now 1, 41, 2, 43, 5
assert(fib.size() == 5);
assert(fib.back() == 5);
fib.pop_back(); // fib is now 1, 41, 2, 43
auto it = fib.begin(); it += 2;
fib.insert(it, 99); // fib is now 1, 41, 99, 2, 43
it = fib.begin() + 2;
fib.erase(it); // fib is now 1, 41, 2, 43

fib.clear(); // remove all elements
assert(fib.empty());



305

std::vector Example

Quiz: What is problematic about this code?

#include <vector>
void func(std::vector<int>& v) {
for (const int& i : v)
if (i > 1)
v.insert(v.begin(), -i);

}

A. Compile error: Cannot get const reference for element.
B. Compile error: insert() needs an index as first parameter.
C. Undefined behavior: after the if body, an invalidated iterator is used.
D. There is no problem.



306

std::vector Example

Quiz: How could this code be improved?

#include <array>
#include <cstddef>
#include <vector>
template <size_t N> void func(std::vector<std::array<int, N>>& v, int x) {
std::array<int, N> a;
for (size_t i = 1; i < N; i++) a[i] = a[i-1] * x + i;
v.push_back(a);

}

A. Instead of copying the array, use std::move in push_back.
B. Construct the array in-place in the vector, then modify that.
C. Make a a reference to reduce stack memory usage.
D. There is nothing to improve.



307

std::vector: Emplacing Elements

▶ emplace(_back): construct element in place to avoid copying/moving
▶ Arguments forwarded to constructor, returns reference to object

struct ExpensiveToCopy { /* ... */ };

std::vector<ExpensiveToCopy> v;
ExpensiveToCopy e1;
e1.foo();
v.push_back(e1); // BAD: copy
v.push_back(std::move(e1)); // Better, but might still be expensive

// Best: element constructed in its final place in the vector
ExpensiveToCopy& e2 = v.emplace_back();
e2.foo();



308

std::vector: Reserving Memory

▶ reserve: size hint to avoid reallocations
▶ capacity: get currently allocated size

std::vector<int> v;

v.reserve(1’000’000); // allocate memory for 1M elements
assert(v.capacity() == 1’000’000);
assert(v.size() == 0); // the vector is still empty!

for (int i = 0; i < 1’000’000; ++i) {
vec.push_back(i); // no reallocations in this loop

}



309

Quiz: What is problematic about this code?

std::vector<int> func(unsigned n) {
std::vector<int> res;
res.reserve(n);
std::vector<int>::iterator it = res.end();
for (size_t i = 0; i < n; i++) {
res.push_back(i * i);
if (i % 3 == 0) it = res.begin() + i;

}
res.push_back(*it);
return res;

}

A. Returning a vector by value is very expensive.
B. The last push_back causes an out-of-bounds write.
C. it is invalidated immediately in the next loop iteration.
D. There is no problem.



310

std::span113

▶ Reference to contiguous array of objects; pair of pointer/length
▶ Supports iteration, subscript, size(), data()
▶ subspan(): sub-region, no elements copied

void printValues(std::span<const int> is) {
for (auto i : is) std::print("{}␣", i);

}
std::vector<int> values{1, 2, 3, 4};
std::span<int> valuesRef = values;
valuesRef[2] = 4;
printValues(values); // prints "1 2 4 4 "

▶ Prefer std::span over reference to std::array, std::vector, ...
▶ Pass std::span by value (it is already a reference)
▶ Prefer std::span<const T> if possible

113https://en.cppreference.com/w/cpp/container/span

https://en.cppreference.com/w/cpp/container/span


311

std::span Example
Quiz: What is problematic about this code?

void func(std::span<const int> cs, std::vector<int>& v) {
for (int c : cs)
if (c < 0)
v.push_back(c);

}
int main() {
std::vector<int> v{-1, 10, -100, 20};
func(v, v);

}

A. Compile error: Must be const int c : cs
B. Passing a vector as span precludes passing it as reference at the same time.
C. The push_back invalidates the iterator of the loop.
D. There is no problem.



312

std::unordered_map114

▶ std::unordered_map<KeyT, ValueT> (unordered_map)
▶ Accepts custom hash and comparison functions as extra template parameters

▶ Container that stores key–value pairs with unique key
▶ Internally a hash table, amortized O(1) search/insert/remove

std::unordered_map<unsigned, double> grades;
grades[12340001] = 1.3;
grades.insert({12340042, 2.7});
grades.emplace(12340123, 5.0); // emplace = construct in-place
assert(grades[12340042] == 2.7);

auto it = grades.find(12340001); // search
if (it != grades.end()) { // found
assert(it->first == 12340001); // key
assert(it->second == 1.3); // value

}
assert(grades.contains(12340001));
114https://en.cppreference.com/w/cpp/container/unordered_map

https://en.cppreference.com/w/cpp/container/unordered_map


313

Unordered Map: Misleading Usage

Quiz: Which answer is NOT correct?

std::optional<double> lookup(std::unordered_map<unsigned, double>& map,
unsigned key) {

if (map[key])
return map[key];

return -1.0;
}

A. key is always inserted into the map.
B. If the stored value is zero, -1 is returned.
C. map is not modified and therefore should be a const reference.
D. The map is searched twice, which is avoidable and inefficient.



314

Unordered Map: Modification

Insertion:
▶ operator[] – get reference to value, insert and default-construct if missing
▶ insert – insert if missing and copy/move construct

▶ Returns std::pair<iterator,bool>; second true iff insertion happened
▶ emplace – construct in-place if missing
▶ Iterator invalidation: only on rehash

Removal:
▶ erase(iterator)/erase(key) – remove element

▶ Iterator invalidation: only iterator for key
▶ clear – remove all elements

▶ Iterator invalidation: all



315

std::map115

▶ std::map<KeyT, ValueT> (<map>) – map sorted by keys
▶ Interface largely similar to unordered_map

▶ Also supported upper_bound()/lower_bound() – return iterator to first
greater/not lower element

▶ Internally a tree (typically R/B-tree), O(log n) search/insert/remove

▶ Only use of sorted keys are required!

115https://en.cppreference.com/w/cpp/container/map

https://en.cppreference.com/w/cpp/container/map


316

std::unordered_set and std::set

▶ std::unordered_set<KeyT> (<unordered_set>) – hash set
▶ std::set<KeyT> (<set>) – set sorted by keys

▶ Largely similar to maps without values
▶ Similar internal representation, methods, complexities

▶ Keys must not be modified



317

std::string116

▶ std::string (<string>) (alias for std::basic_string<char>)
▶ Class for (mutable) character sequences
▶ Manages memory and knows its length (unlike C strings)
▶ Access to underlying C-string: c_str()
▶ Prefer std::string over C-style strings (char*)!

std::string s; // default-constructs, empty string
assert(s.size() == 0);

std::string s_constructed("my␣literal");
std::string s_assigned = "hi";
s_assigned[0] = ’H’;
std::println("{}␣{}", s_assigned, s_assigned[1]); // prints: "Hi i"

116https://en.cppreference.com/w/cpp/header/string

https://en.cppreference.com/w/cpp/header/string


318

std::string: Null Bytes
Quiz: What is the output of the following program?

#include <print>
#include <string>
int main() {
std::string s1 = "null\0byte";
std::string s2("null\0byte", 9);
std::println("{}/{}", s1, s2);
return 0;

}

A. Compile error: String literals cannot include null-bytes
B. Undefined behavior: std::string cannot include null-bytes
C. null0byte/null0byte
D. null/null0byte
E. null/null



319

std::string: Operations

▶ ==, <=>: lexicographical comparison of full strings
▶ size(): number of characters in string
▶ empty(): whether string is empty
▶ find(): offset of first occurrence of substring, or std::string::npos

▶ append(), +=: append string/char, might cause memory allocation
▶ +: concatenate into new heap-allocated string
▶ substr(): new std::string containing substring

▶ This is often not what you want!



320

std::string_view117

▶ Read-only view on existing string
▶ Similar to span<const char>: just a pointer and a length
⇝ Creation, substring, copying is constant time (linear for std::string)
▶ Prefer std::string_view over std::string/std::string&

std::string s = "garbage␣garbage␣garbage␣interesting␣garbage";
std::string sub = s.substr(24,11); // With string: O(n)
// With string view:
std::string_view s_view = s; // O(1)
std::string_view sub_view = s_view.substr(24,11); // O(1)

bool is_eq_naive(std::string a, std::string b) {return a == b; }
bool is_eq_views(std::string_view a, std::string_view b) { return a == b; }
is_eq_naive("abc", "def"); // 2 allocations at runtime
is_eq_with_views("abc", "def"); // no allocation at runtime

117https://en.cppreference.com/w/cpp/string/basic_string_view

https://en.cppreference.com/w/cpp/string/basic_string_view


321

std::string: Implementation

▶ Different standard libraries have different implementations118

▶ Typically: pointer, size, capacity
▶ Pointer (can) to heap memory, deleted on destruction

▶ Typically: small-buffer optimization
▶ Most strings are small, heap allocations are expensive
⇝ Store small buffer (e.g., 15 bytes) inline in std::string
▶ Downside: more operations invalidate iterators
▶ Permitted by C++ standard

118https://devblogs.microsoft.com/oldnewthing/20240510-00/?p=109742

https://devblogs.microsoft.com/oldnewthing/20240510-00/?p=109742


322

Small Buffer Optimization

Quiz: Why does std::vector not implement small-buffer
optimization?

A. Not very useful ⇒ no one implemented it so far.
B. Insertion would no longer be amortized O(1).
C. Reduce memory usage by not having inline space.
D. Moving a vector must not invalidate iterators.



323

Containers and Iterators – Summary

▶ Standard library provides several utility and container templates
▶ Simple pairs/tuples; can be extracted with structured bindings
▶ Iterators provide unified pointer-like interface for container element access
▶ Modifications of containers typically invalidate iterators
▶ Vector: dynamically sized array, most popular container
▶ (Unordered) map/set: associative containers

▶ Ordered containers typically less efficient
▶ String: character sequence with managed storage
▶ String view/span: view into array or string

▶ Containers good enough to not immediately write a custom implementation



324

Containers and Iterators – Questions

▶ When do iterators get invalidated? How does this vary for different
containers and their operations?

▶ Why does iterator invalidation frequently cause problems in practice?
▶ How does a range-based for loop work?
▶ Why is are unordered maps/sets preferable over ordered maps/sets?
▶ What are the benefits of std::string over C-style strings?
▶ When to use std::span/std::string_view and pass them as parameters?
▶ Why is small-buffer optimization often beneficial/wanted?


	Containers and Iterators
	Utilities
	Iterators
	Vector and Span
	Map and Set
	String


