
365

Concepts of C++ Programming
Lecture 10: Exceptions and Advanced Memory Management

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology

Technical University of Munich

Winter 2024/25



366

C++ Exceptions130

▶ Exceptions have similar semantics as in other languages
⇒ Transfer control and propagate information up the call stack
▶ Thrown by throw, new, and some standard library functions

▶ Exceptions can be handled in try–catch blocks
▶ Unhandled exceptions lead to termination

▶ When transferring control up the call stack, the runtime performs stack
unwinding

▶ All objects with automatic storage duration are destructed
⇝ Correct behavior of RAII classes

130https://en.cppreference.com/w/cpp/language/exceptions

https://en.cppreference.com/w/cpp/language/exceptions


367

Throwing Exceptions131

▶ throw expression;
▶ Objects of any complete type can be thrown
▶ Exception object (heap-allocaetd) copy-initialized with expression
▶ Typically a subclass of std::exception

#include <exception>
void foo(unsigned i) {
if (i == 42)
throw 42;

throw std::exception();
}

131https://en.cppreference.com/w/cpp/language/throw

https://en.cppreference.com/w/cpp/language/throw


368

Handling Exceptions132

▶ try { ... } catch (declaration) { ... };
▶ Exceptions occuring during try-block can be handled in catch-block
▶ Declaration type determines which type of exception is caught

#include <exception>
void bar() {
try {
foo(42);

} catch (int i) { // handle exception of type int
} catch (const std::exception& e) { // handle exception of type std::exception
} catch (...) { // catch-all
}

}

132https://en.cppreference.com/w/cpp/language/catch

https://en.cppreference.com/w/cpp/language/catch


369

Exceptions: Example
Quiz: What is problematic about this code?

#include <memory>
#include <print>
int foo(const int& x) { return x != 0 ? throw x : x; }
int bar(int x) { std::unique_ptr<int> ui(new int);

*ui = x * 2; return foo(*ui); }
int main() {
try { std::print("ok!␣{}\n", bar(21));
} catch (int x) {}

}

A. Compile error: throw is a statement, not an expression.
B. Memory leak: Memory from new is leaked on exception.
C. Unhandled exception: the exception has type const int&.
D. Nothing: the program terminates with exit code zero.



370

Exceptions: Miscellaneous

▶ In a catch block, the current exception can be re-thrown
▶ Syntax: throw;
▶ E.g., to clean up resources and propagate exception further

▶ Functions can be marked as noexcept
▶ Part of the function type
▶ Indicates that the function will never throw an exception
▶ Any exceptions that would propagate cause program termination

▶ Destructors, move constructors/assignment must not throw exceptions



371

Quiz: Which answer is correct?

#include <print>
struct A { A() { throw 1; } };
struct B {

A a;
B() try : a() {
} catch (int x) {

std::println("whoops?␣{}", x);
throw; // rethrow exception

}
};
int main() { try { B b; } catch (int x) { return x; } }

A. Compile error: Cannot use try outside function body.
B. The throw; is not necessary.
C. a is life in the catch block of the constructor.
D. No object of type A can be constructed, but objects of type B can be.



372

Exceptions: Performance and Code Size Considerations

▶ Exception handling (stack unwinding) is rather expensive
▶ Low overhead if no exceptions are thrown
⇒ In any case, exceptions should be used rarely

▶ The mere possibility of exceptions inhibits some optimizations
▶ Increased control flow complexity, more state must be kept in stack memory

▶ For every possibly throwing call, corresponding cleanup code must be
generated

▶ Unwind tables that map code location to cleanup landing pad can grow large
⇝ Enabling exceptions can have substantial code size impact

▶ To disable exceptions: -fno-exceptions



373

Exceptions: Guidelines

▶ Use exceptions only in rare cases
▶ E.g., dynamic runtime errors (e.g., malformed data)

▶ Do not use exceptions for programmer errors
▶ Use assertions for this

▶ Do not use exceptions for control flow
▶ Use regular control flow operations for this

▶ Generally: exceptions should be avoided where possible
▶ When not using exceptions at all, disable them via a compiler flag



374

operator new
▶ operator new (<new>) can take arguments133

▶ Default, implicitly: operator new (size)
▶ Example: overload with extra arg std::nothrow_t

#include <new>
#include <array>
#include <print>
struct A { /* ... */ };
int main() {
// Will throw std::bad_alloc
auto* p1 = new std::array<int, 100000000000>();
// Will return nullptr on allocation failure
auto* p2 = new(std::nothrow) std::array<int, 100000000000>();
if (!p2)
std::println("allocation␣failed!");

}

133https://en.cppreference.com/w/cpp/memory/new/operator_new

https://en.cppreference.com/w/cpp/memory/new/operator_new


375

Manually managing memory

▶ Sometimes, the default memory management operations are not enough
▶ E.g., repeatedly calling new (explicit or implicit) is too expensive
▶ E.g., for reusing already available memory

⇝ Placement new: construct object in already allocated storage
▶ Manually call constructor and destructor



376

Placement new

▶ operator new(size, void* ptr)
▶ Returns ptr without doing any allocation

▶ Alignment must be ensured manually

#include <cstddef>
#include <new>
struct A { /* ... */ };
int main() {
alignas(A) std::byte buffer[sizeof(A)];
A* a = new(buffer) A();
// ... do something with a
a->~A(); // we must explicitly call the destructor

}



377

Placement new and Lifetime

▶ Placement new ends lifetime of overlapping objects; creates new object
▶ Lifetime is nested within the underlying storage

struct A { };
int main() {
A* a1 = new A(); // lifetime of a1 begins, storage begins
a1->~A(); // lifetime of a1 ends
A* a2 = new (a1) A(); // lifetime of a2 begins
delete a2; // lifetime of a2 ends, storage ends

}



378

Quiz: How to deallocate s1? What to write instead of XXX?

template <class T, size_t N>
class TAlloc {
alignas(T) std::byte buffer[sizeof(T[N])];
size_t cnt = 0;

public:
T* make(T&& t) {
void* vp = &buffer[sizeof(T)*cnt++];
T* r = reinterpret_cast<T*>(vp);
::new(r) T(std::move(t));
return r;

}
};
int main() {
TAlloc<std::string, 3> ta;
auto* s1 = ta.make("Hello␣World!");
// XXX

}

A. delete(s1);
B. s1->˜string();
C. s1->˜basic_string();
D. ta.˜TAlloc();
E. Nothing, the strings are

automatically freed at the
end of main.



379

Placement new with unique_ptr

▶ std::unique_ptr<T, Deleter> – specify type of deleter
▶ Second parameter in constructor to specify deleter instance

▶ Default deleter calls delete
▶ For use with non-standard allocation, a custom deleter is required

▶ Code that uses custom allocators is typically rather complex
⇒ unique_ptr is often not particularly useful in such contexts



380

Overloading operator new

▶ Classes can overload operator new and operator delete
▶ Can also provide overloads with extra arguments

▶ Rarely useful, e.g.:
▶ Allocating extra storage after/before the object



381

union
▶ Class type that holds only one of its non-static members at a time
▶ Storage large enough to hold largest element
▶ All data members have the same address

▶ Writing to a union member activates it
▶ Reading an inactive union member is undefined behavior

union MyUnion { float f; long l; short a[2]; };
static_assert(sizeof(MyUnion) == sizeof(long));
int main() {
MyUnion u; // f active, default-initialized
u.f = 123.0; // f active
u.a[1] = 12; // a active
return u.a[1]; // ok

}



382

Union: Example

Quiz: What is the output of the program?

#include <print>
int main() {
using Converter = union { float f; unsigned u; };
std::println("{:08x}", Converter{32.5f}.u);
return 0;

}

A. Compile error: Cannot have untyped union.
B. Compile error: Union initializer is ambiguous.
C. Undefined behavior: Program reads inactive union member.
D. The integer representation of 32.5f (42020000).



383

std::bit_cast134

▶ For bitwise reinterpretation of object representations, use
std::bit_cast<TargetTy>() from <bit>
▶ Do not use union for this – C++ differs from C here
▶ Do not use reinterpret_cast

134https://en.cppreference.com/w/cpp/numeric/bit_cast

https://en.cppreference.com/w/cpp/numeric/bit_cast


384

Union with Non-Primitive Types

▶ unions can have non-primitive members
▶ union doesn’t know which member is active...
▶ Lifetime needs to be managed explicitly outside of the union

▶ Typical use as part of a struct which tracks active element
▶ Can be used to implement more efficient variant
▶ Very difficult to get right
⇝ Prefer std::variant



385

Union with Non-Primitive Types: Example

union U {
std::vector<int> v;
std::string s;
// needs explicit destructor -- can’t do anything!
// union doesn’t know which member is active
~U() {}

};
int main() {
U u{}; // constructs first element
u.v.push_back(123);
u.v.~vector<int>(); // lifetime of u.v ends
new(&u.s) std::string("123"); // lifetime of u.s begins
std::println("{}", u.s);
u.s.~basic_string(); // lifetime of u.s ends
// ~U() will be called, but is defined to do nothing

}



386

Implementing our own Vector

▶ At this point, we can implement our own vector

(see script)



387

Allocating Raw/Uninitialized Memory

▶ C malloc/free often work, but not always
▶ Problem: type might have increased alignment requirement

▶ std::allocator<T>135 respects additional requirements
▶ allocate(elementCount) – allocate an array suitable for n objects
▶ deallocate(ptr, elementCount) – deallocate previously allocated

memory

135https://en.cppreference.com/w/cpp/memory/allocator

https://en.cppreference.com/w/cpp/memory/allocator


388

Helper Functions for Handling Uninitialized Memory

▶ Provides more guarantees in case of an exception
▶ std::uninitialized_move

– move range of elements into uninitialized memory
▶ std::uninitialized_default_construct

– default-construct range of elements into uninitialized memory

▶ std::destroy – destruct range of elements



389

Exception Safety when Moving

▶ Move constructor/assignment might throw exceptions

Quiz: (Why) is this problematic?

A. Afterwards, vector might be in unrepairable state
B. Exception cannot be caught properly
C. New allocation will always be leaked
D. This is not a problem, just annoying

▶ std::vector guarantees exception safety
▶ E.g., push_back guarantees to have no effect if any operations throws

▶ If move operations are not noexcept, elements will be copied instead



390

memcpy/memmove

▶ For primitive data types, constructing/destructing is not required
▶ std::is_trivially_copyable_v<T> – indicates whether byte-wise

copying is possible
▶ In fact, this is also possible for structs of trivially copyable types

▶ std::memcpy(dest, src, count) – copy bytes between non-overlapping
regions

▶ std::memmove(dest, src, count) – copy bytes between regions
▶ In both cases, alignment of destination must be suitable



391

Custom Allocators

▶ Sometimes, the default allocator is not good enough
▶ Many small allocations are expensive
▶ All allocations have to be freed separately
▶ Every allocation has memory overhead (e.g., tracking allocation size)
▶ Requires synchronization in multi-threaded applications
▶ Possibly bad locality

▶ Typical solution: bump pointer allocator
▶ Allocate large chunk of memory once
▶ Hand out slices for individual allocations
▶ Free allocated memory when allocator is destroyed



392

Custom Allocators in C++

▶ Requirements specified by Allocator
▶ In essence: value_type, allocate, deallocate

▶ Containers are allocator-aware and can use custom allocators

▶ Bump-ptr allocator in C++ standard library:
std::pmr::monotonic_buffer_resource
▶ Usable with std::pmr::polymorphic_allocator as allocator
▶ Performance characteristics not that good (see inheritance later)

▶ For performance with many small allocations, custom allocators are often
required



393

Exceptions and Advanced Memory Management – Summary

▶ C++ Exceptions allow for unordinary control flow transfers
▶ Almost everything can be thrown and caught
▶ Exception unwinding calls destructors of objects with automatic storage

duration
▶ Objects can be constructed in allocated memory with placement new
▶ Required when memory allocation and object construction are separated
▶ unions provide an untagged overlapping storage
▶ Writing exception-safe code is difficult
▶ Custom allocators can substantially improve performance in some

applications



394

Exceptions and Advanced Memory Management – Questions

▶ Why do some people see C++ exceptions as problematic?
▶ What are upsides and downsides of C++ exceptions?
▶ Why is writing exception-safe code difficult?
▶ What happens when an exception is thrown in a noexcept function?
▶ Why should move constructors/assignment be marked as noexcept?
▶ What requirements must be met for placement new?
▶ Why is using union much more difficult than in C?
▶ What are benefits of bump pointer allocators?


	Exceptions and Advanced Memory Management
	Exceptions
	Explicit Object Construction
	Unions
	Implementing a Vector


