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ABSTRACT
Finding the minimum connected subtree of a graph that
contains a given set of nodes (i.e., the Steiner tree problem)
is a fundamental operation in keyword search in graphs, yet it
is known to be NP-hard. Existing approximation techniques
either make use of the heavy indexing of the graph, or entirely
rely on online heuristics.
In this paper we bridge the gap between these two extremes
and present a scalable landmark-based index structure that,
combined with a few lightweight online heuristics, yields a
fast and accurate approximation of the Steiner tree.
Our solution handles real-world graphs with millions of nodes
and provides an approximation error of less than 5% on
average.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—Graphs and Networks; H.2.4
[Database Management]: Systems—Query Processing

General Terms
Algorithms, Experimentation, Theory, Performance

Keywords
Graph Databases, Keyword Search, Steiner Trees

1. INTRODUCTION
1.1 Motivation
The Steiner tree problem, that is, the problem of connecting
a given set of nodes (also called keywords, or terminals)
in a graph such that the total length is minimized with
respect to some predefined cost function, is a problem with
long academic history. Its importance is based on a variety
of applications ranging from VLSI design to the study of
phylogenetic trees. In this paper we will concentrate on three
application scenarios in the area of knowledge management:
Keyword search in graphs. Keyword search is the most
popular information discovery method because it does not
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require the knowledge of the query language or the under-
lying schema. Consider the entity-relationship graph where
nodes are entities (e.g., extracted from Wikipedia) and edges
represent relationships between entities. The keyword search
problem in this setting can be formulated as: Given a few
input entries, discover the relationships between them. Due
to the proliferation of large web-scale knowledge bases like
YAGO, DBPedia or Freebase, the keyword search in graphs
receives great attention for information discovery beyond
traditional relational databases.
Keyword search in relational databases. Since tuples
can be treated as nodes connected with foreign-key relation-
ships, the keyword search on this type of data can be again
modelled as finding the Steiner trees in graphs.
Social networks. In the Social Network setting, it is impor-
tant to identify familiar strangers (Stanley Milgram, 1972) –
i.e. the individuals who do not know each other, but share
some attributes or properties in common. Here, the Steiner
tree that spans the individual and its familiar strangers
consists of the minimal number of edges that one needs to
traverse in order to discover all of the familiar strangers.

1.2 Problem difficulty and our contributions
The Steiner tree problem is one of Karp’s 21 NP-complete
problems [8]. Moreover, it is in the APX class, i.e. an
arbitrarily good approximation can not be achieved in poly-
nomial time. We have to, therefore, consider approximation
heuristics with rather poor theoretical guarantees.
Most of the practical approximation algorithms for this prob-
lem estimate the Steiner tree using the shortest paths between
the input keyword nodes. Doing this, existing approaches
usually follow one of these extreme lines:
No index: Use the graph as is, and do not perform any
precomputation on it. In this case, one has to follow a
Breadth-First Search (or similar, e.g. Bidirectional search)
expansion strategy starting from every input node of the
query. While many effective heuristics on guiding and speed-
ing up the Breadth-First Search in this setting have been
proposed (BANKS [1], Bidirectional [7], STAR [9]), their
performance is still poor on very large instances of graph
data.
Index only: Perform extensive indexing of the graph, and
after that do not use the original graph at all. This, for
example, includes precomputation of all keyword-to-node
distances in the original graph (or, within every partition
of the graph [6]). Another proposed index is based on the
computing of high powers of the adjacency matrix [12]. As
we see, these techniques can not easily be applied for graphs
with millions of nodes.



In this paper we propose a mixed approach of no index and
only index that allows for efficient approximation of Steiner
trees for both in-memory and disk-resident graphs. The idea
is to use a landmark-based index for the fast approximation
of distances between the keywords, and then to run the (very
limited) local search on both the index and the graph in
order to minimize the approximation error.
We build upon our recently proposed path-sketch index for
shortest path approximation [5], which in turn is based on
the classical concept of landmark-based distance oracles [14].
The goal is to generalize the approximation scheme from the
case of just 2 keyword nodes (shortest path problem) to the
general case of k nodes (Steiner tree problem).
To summarize, the contributions of the paper are the follow-
ing:

1. We build a generalized version of the sketch-based path
estimation algorithm for the Steiner tree estimation
(the Sketch algorithm)

2. We devise an algorithm that utilizes the sketch index
and performs (limited) local search on the graph (the
SketchLS algorithm)

3. We perform an extensive evaluation study on large real-
world graphs that contain up to three million nodes.

In all of our benchmark datasets, the estimates returned by
our algorithms are better than those delivered by state-of-the-
art keyword search algorithms, and we achieve runtimes that
are an order of magnitude faster than in other approaches.
The rest of the paper is organized as follows. After the related
work overview (Section 2), we describe the previously devised
sketch algorithm (Das Sarma et al.[2] and Gubichev et al.[5])
and show the way to use it for Steiner tree approximation
(Section 3). Subsequently, we describe the new algorithm
combining the sketch index with the online search on the
graph. We proceed to Section 4, which contains extensive
experiments on the real-world graphs and comparisons with
other approaches. Section 5 concludes our findings.

2. RELATED WORK
The problem has a very rich history, here we will briefly
review the work done in three major directions: (i) exact
methods and approximation bounds, (ii) no-index (explo-
ration) heuristics, (iii) index-based heuristics.

Exact methods and theoretical approximations: Drey-
fus and Wagner [4] and recently Ding et al. [3] exploit the
dynamic programming approach to the Steiner tree problem
by computing optimal results for all subsets of terminals
(DPBF algorithm). Both methods are naturally applicable
only to moderate size graphs.
One of the first approximation algorithms is the minimum-
spanning tree (MST) heuristic [10]. This heuristic builds a
complete graph (a distance network) on terminals, where
edges are attributed with the shortest distances between
corresponding terminals. At the second step, the minimum
spanning tree of the distance network is computed and re-
turned as an approximation of the Steiner tree, which is
guaranteed to be at most 2 times worse than the exact
Steiner tree.
Exploration heuristics: The MST heuristic has been emu-
lated by BANKS [1] and Bidirectional [7]. BANKS operates
with k iterators (one per input keyword) which are expanded

in a breadth-first manner along incoming edges (i.e., in back-
ward direction) until they meet, and then the result subtree
is constructed. Bidirectional [7] improves on this method by
adding the forward-directed traversal, reducing the number
of iterators, and prioritizing nodes with low degrees for expan-
sion. STAR [9] follows the intuition of heuristic local search.
Initially, a candidate tree is constructed by similar breadth-
first expansions. Then, this candidate tree is improved by
replacing the longest path in the tree with a shorter one.
The algorithm terminates when no further replacement is
possible.
Index-based heuristics: BLINKS [6] operates on two in-
dexes that capture keywords reachable from nodes, and vice
versa. The input graph is partitioned into blocks, and the
top level block index as well as the intra-block indexes for
each block are maintained. The keyword search starts with
backward expansion within multiple blocks. If the boundary
of a block is reached, new iterators are created to explore
the adjacent blocks. BLINKS greately depends on the parti-
tioning of the graph, which is quite an expensive operation
in itself. Moreover, the performance of BLINKS suffers in
case of relatively dense graphs (such as social networks),
where two adjacent blocks may have many boundary nodes
in common, and one boundary node may be shared by many
blocks.

We note that some of the techniques mentioned above were
designed with goals broader or different than just Steiner
tree computation: BANKS, BANKS II and DPBF can also
deliver the solution of the Group Steiner Tree; many of the
algorithms return top-k results and rank them.
We also briefly mention here that the database community
has considered keyword queries over relational databases
using the schema-based approaches. A survey of this line of
work can be found in [15].

3. ALGORITHM DESCRIPTION
In this section we explain our algorithms for Steiner tree
approximation in detail. We first provide a concise descrip-
tion of the sketch index devised by Das Sarma et al. [2] and
modified by Gubichev et al. [5], which lays the foundation
for our approach. We proceed with two novel algorithms for
the Steiner tree approximation.

3.1 Preliminaries
Let G = (V,E) denote an undirected and unweighted graph
with vertexes V and edges E. Note that our algorithms can
be easily extended for directed and weighted graphs, we leave
out the details due to the lack of space. We assume G is
connected.
Steiner Tree. A tree T is a connected subgraph of G
without cycles. In other words, if T is a tree, there exists
a vertex r ∈ T (called the root) such that every node in T
is connected to r via a simple path. We write |T | to denote
the size of the tree, i.e. the number of distinct edges in T .
The Steiner tree for the node set Q = {q1, . . . qk} ⊆ V is
the tree of minimal size that contains all the nodes from Q
(also called terminals or keywords). Note two extreme cases:
when k = 2, the Steiner tree is the shortest path between
q1 and q2; when k = |V |, the Steiner tree is the minimum
spanning tree of G.
Steiner Tree Approximation. Given the terminal set
Q ⊆ V , let Ts denote a Steiner tree (note that there could
be several) for Q. Furthermore, let Ta be an arbitrary tree



containing all the nodes from Q. By definition, |Ts| ≤ |Ta|,
and if we consider Ta as an approximation of Ts, then the

error ratio of this tree is defined as ratio(Ta) := |Ta|
|Ts| ∈

[1,∞). The goal of our heuristical approximation algorithms
is to keep ratio(Ta) as small as possible while achieving low
running time.

3.2 Sketch Index
The classical distance approximation algorithm has two
stages: indexing of the graph in the offline part, and fast
approximation of distances using the index in the online
part. For the indexing part, a small subset of nodes (land-
marks) is selected, and distances between landmarks and
all other nodes are computed with the standard Dijkstra’s
algorithm. The online part employs the triangle inequality:
if u and v are the input nodes and l is the landmark, then
dist(u, v) ≤ dist(u, l)+dist(l, v). We can, therefore, estimate
dist(u, v) with the (known from the index) dist(u, l) and
dist(l, v).
The sketch index on which we build our approximation al-
gorithms (proposed in [2] and modified in [5]) is computed
with the following precomputation procedure:

1. Seed sampling. Sample uniformly at random the
sets of seed nodes S1, S2, . . . Sm of sizes 1, 2, . . . , 2m−1,
where m = log |V |.

2. Shortest path tree. For every seed set Si perform
the Dijkstra’s algorithm expansion from it and compute
the complete shortest path tree SPTi.

3. Sketch For every node v ∈ V and for every seed set
Si we get the node l ∈ Si which is the closest to v,
and the corresponding path between v and Si. All this
information is extracted from SPTi computed in the
previous step. The node l ∈ Si is called the landmark
for v in Si.

Note that for every seed set the computation of SPTi is
performed independently from other sets. We can therefore
easily run m instances of Dijkstra’s algorithm in parallel,
which leads to a very moderate indexing time.
After indexing, the distance estimation algorithm can ap-
proximate the path (and therefore the distance) between u
and v by loading Sketch(u), Sketch(v), finding common land-
marks in the sketches along with the corresponding paths,
and concatenating those paths.

3.3 Sketch Algorithm
Our first contribution, the Sketch algorithm for the Steiner
tree problem, is a generalization of the sketch-based shortest
path approximation to the case of k input nodes. It is de-
picted in Algorithm 1. There, after loading the sketches and
finding common landmarks between them, we construct the
Steiner tree approximation by merging the paths from the
input nodes to the landmarks. Figure 1 illustrates this idea:
l3 is the common landmark for three sketches, so we yield the
tree consisting of three paths-branches: (q1, . . . , l3), (q2, . . . , l3)
and (q3, . . . , l3)
Since the diameters and thus the path lengths in the consid-
ered graphs are bounded (small world phenomena in social
networks [13]), we can assume the constant time of adding a
path to the tree T (line 8 of Algorithm 1). Furthermore, the
number of iterations (lines 4-8) does not exceed the number
of different seed sets used for the sketch computation. We
get |Res| ≤ k log |V |, and therefore the complexity of the
Sketch algorithm is O(k log |V |).

Figure 1: Sketch Algorithm Example
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Algorithm 1: Sketch(q1, . . . , qk)

Input: Q = {q1, . . . , qk} ∈ V
Result: Res – priority queue of trees containing q1, . . . , qk

ordered by tree size
1 begin
2 Load sketches Sketch(q1), . . . , Sketch(qk)
3 L← common landmarks of Sketch(q1), . . . , Sketch(qk)
4 foreach l ∈ L do
5 T ← ∅
6 foreach qi ∈ Q do
7 Add path between qi and l to T

8 Add T to queue Res

9 return Res

3.4 SketchLS Algorithm
In this section we describe a new algorithm, coined SketchLS,
for the Steiner tree approximation based on sketches and
local search (LS) on the original graph.
The Sketch(v) consists of paths from v to the landmarks.
This collection can be viewed as a tree with the root in v and
landmarks as leaves. Every inner node in this tree belongs
to some shortest path obtained during the precomputation
stage, and the whole tree therefore is a subgraph of G.
The algorithm, depicted in Algorithm 1, starts with loading
sketches and initializing k instances of Breadth-First Search
that will run on sketches (lines 6-7). For every BFS process
we keep the set of frontier nodes, that is, the nodes that are
currently at the maximum distance from the source node.
The BFS instances are called in a round-robbin manner (lines
8-22), and the current process makes one step in the sketch
(line 9). The currently visited node v may be connected in the
original graph G with the nodes visited by other processes.
We check whether this is the case, i.e. whether the node v
is in fact a neighbor of any previously visited node (lines
12-18), by looking up the neighbors of v in the original graph
G, and if this is the case, we construct the path between qi
and qj (line 16). This is the ”local search” part in a sense
that it involves browsing neighbors of a node in the original
graph. We keep track of the connected pairs of nodes in
Scover, and as soon as all the input nodes are covered, stop
the procedure. The set Scover can be viewed as an edge list
of the graph with nodes q1, . . . , qk, since at every step we
add to it an edge of a form (qi, qj). The condition in the
lines 13-14 makes sure that this graph does not have cycles
and that the result T is thus a tree.
The Figure 2 illustrates this algorithm. In the beginning,
we load the sketches (Figure 2a) and initialize three BFS



Figure 2: SketchLS Algorithm Example
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processes. After few iterations, the bold edges (Figure 2b)
denote the edges already visited by Breadth-First iterators.
The current node v is in the frontier of the first process, and
it is connected to the node l2 from the frontier of the third
process. We immediately get the path (q1, v, l2, q3). At the
next step (Figure 2c), the remaining processes BFS1 and
BFS2 meet via the edge (v, l3). In this case, we also discover
that v1 and l4 are neighbors, but that would create a cycle in
Scover: (q1, q2) and (q2, q1), so we skip this step and conclude:
now Scover covers all three input nodes.
Let us estimate the complexity of this algorithm. The size
of the subgraph on which we perform our BFS processes, is
the sum of k sketch sizes, i.e. O(k log |V |) (We assume that
the diameter of the graph is bounded, this holds for most of
the real-world graphs except the road networks [13].) So, we
perform O(k log |V |) requests for neighbors in the graph G,
and O(k2 log2 |V |) set intersections for every pair of visited
nodes in the worst case (line 12). If the maximal degree
of G is Dmax, then the hash-intersection of F [j] and N (v)
has the complexity of O(Dmax + k log |V |), and the overall
complexity of SketchLS is O(k2 log2 |V |(Dmax + k log |V |)).
As we see, the asymptotic behaviour of SketchLS is worse
than that of Sketch. However, in the evaluation section we
will show that it is compensated by exceptional quality of
solutions found by SketchLS, and that both algorithms are
still orders of magnitude faster than their state-of-the-art
competitors.

4. EVALUATION
We describe the competing algorithms and the datasets used
for the evaluation in Subsection 4.1. The approximation qual-
ity of the different approaches is assessed in Subsection 4.2.1,
query runtime measurements are carried out in Subsection
4.2.2.

Algorithm 2: SketchLS(q1, . . . , qk)

Input: Q = {q1, . . . , qk} ∈ V
Result: T –the tree containing q1, . . . , qk

1 begin
2 Load sketches Sketch(q1), . . . , Sketch(qk)
3 BFS ← new vector(k) . vector of BFS processes

4 F ← new vector(k) . frontiers of processes

5 Scover ← ∅ . set of covered nodes

6 foreach qi ∈ Q do
7 BFS[i]← Breadth First Search from qi

8 foreach BFSi ∈ BFS do
. round-robin iteration

9 v ← BFSi.next()
10 F [i].insert(v)
11 foreach F [j] ∈ F, j 6= i do
12 if N (v)∩ F [j] 6= ∅ then . N (v) = neighbors of v ∈ G

13 if {qi, qj} creates a cycle in Scover then
14 continue

15 n← any node in N (v) ∩ F [j]
16 p← (qi, . . . , v, n, . . . , qj) . new path

17 T .insert(p)
18 Scover.insert({qi, qj});

19 if ¬BFSi.hasNext then
20 BFS.remove(BFSi)

21 if Scover covers all q1, . . . , qk then
22 break

23 return T

4.1 Systems and Datasets
We implement our algorithms in C++ uning the GNU-C++
STL library. We use the C++ implementation of DPBF [3]
provided by the authors, and re-implement the Bidirectional
algorithm [7] in C++ following the reference implementation
in Java that was kindly provided by Heo He [6]. We also
implement the minimum spanning tree heuristic (MST). We
do not consider BANKS, since its successor Bidirectional
outperforms it [7], and BLINKS, because it optimizes a
different objective function and we are not able to measure
the approximation quality.
We examined our approach in comparison with other systems
for two classes of real-world graphs:

Relational databases. We experiment with IMDb [6], a
dataset derived from the popular website. It contains tuples
from different tables such as Movie, Person, Role, connected
via the foreign-key relationships. The resulting graph has
44,345 nodes and 393,228 edges.

Social networks. We consider (partial) crawls of the fol-
lowing networks: Slashdot [11], Youtube, Flickr and Orkut
[13]. In all datasets, users and friendship relationship be-
tween them form the graph structure. The datasets consist of
77,360 nodes, 1,138,499 nodes, 1,715,255 nodes, and 3,072,441
nodes, respectively.

All the algorithms were run on a commodity server with the
following specifications: Dual Intel X5570 Quad-Core-CPU,
8 Mb Cache, 64 Gb RAM, running Redhat Enterprise Linux
with 2.5.37 kernel.



Table 1: Approximation Error

Dataset Sketch SketchLS MST Bidirect. STAR

Slashdot 12% 4.4% 12.2% 23% 11%
IMDb 10.5% 4.1% 12% 37.9% 6.9%

4.2 Experimental results
4.2.1 Approximation quality

We assess our algorithms by using them for 1000 randomly
generated queries per dataset. Each query has 3 to 7 key-
words sampled from the graph uniformly at random. In
case of smaller graphs (Slashdot, IMDb) we were able to
compute an exact Steiner tree Ts using the DPBF algo-
rithm. Then, the relative approximation error is computed

as error(Ta) = |Ta|−|Ts|
|Ts| = ratio(Ta) − 1, where Ta is the

size of the approximate Steiner tree returned by different
heuristics in use, and ratio(Ta) is the approximation ratio as
defined in Section 3.1.
For bigger datasets, however, the exact algorithm does not
scale. The metrics of comparison is the relative difference

diff(Ta) = |Ta|−|Tls|
Tls

, where Tls stands for the tree yielded

by the SketchLS algorithm, and Ta is the size of the tree
returned by the heuristic in use. Theoretically speaking,
this value can be negative. However, as in our experiments
the resulting trees returned by the SketchLS algorithm are
the smallest among competing algorithms, it remains non-
negative for all the test cases. The obtained approximation
errors are given in Table 1, the relative difference between
SketchLS and competing algorithms is plotted in Figure 3a.

4.2.2 Time
Another important factor that we measure is the number of
nodes visited (touched) by the algorithms and, consequently,
their running times. Since Bidirectional and STAR are de-
signed to return top-K results, we set that K parameter to
1 for them, so that only one result is required. We observed
that the Local Search done on the original graph G is limited
in all cases to exploring of few hundreds of nodes. On the
other hand, the no-index strategy of Bidirectional, STAR
and MST leads to extremely large number of nodes that they
visit during the query processing. This, in turn, explains
their prohibitedly large running times for our graphs, plotted
in Figure 3b using a logarithmic scale on the vertical axis.
As the numbers demonstrate, our algorithms’ running times
are clearly superior to all existing approaches: the simple
Sketch algorithm is up to 3 orders of magnitude faster than
any other existing algorithm under consideration, the new
SketchLS algorithm is up to 2 orders of magnitude faster
than competitors.

5. CONCLUSIONS
In this paper we present two novel algorithms for the Steiner
tree approximation. They are based on the existing work
done in the area of shortest path approximation, and combine
the indexing with graph search strategies – the idea that has
not yet been considered for the Steiner tree problem.
We evaluate the quality and the speed of our approximations
by conducting a number of experiments on large real-world
graphs. We demonstrate that our heuristics outperform the
existing algorithms in quality, and can significantly improve
the running times of the keyword-searh query processing.

Figure 3: Evaluation results: (a) Relative difference between
SketchLS and others, (b) Running time of algorithms
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