
How to generate query parameters in RDF
benchmarks?

Andrey Gubichev #1, Renzo Angles †2, Peter Boncz ∗3

TU Munich, Germany
1 gubichev@in.tum.de

† Universidad de Talca, Chile
VU University Amsterdam, Netherlands

2 rangles@utalca.cl

∗ CWI, Netherlands
3 p.boncz@cwi.nl

Abstract—In this paper we consider the problem of generating
parameters for queries in RDF benchmarks. We show that
uniform random sampling of the substitution parameters is not
well suited for RDF benchmarks, since it results in unpredictable
runtime behavior of queries. We formulate a formal problem of
parameter generation to ensure stable and statistically significant
benchmark results.

I. INTRODUCTION

A typical benchmark consists of two parts: (i) the data
generator that creates syntactic dataset of the desired scale,
and (ii) the workload generator that issues queries against
the generated data based on the pre-defined query templates.
A query template is an expression in the query language
(e.g., SPARQL) with substitution parameters that have to be
replaced with real bindings by the workload generator, for
example:
select * where {

?person sn:firstName %name .
?person sn:livesIn %country.

}
Here, the workload generator would produce a number of

different pairs of bindings (say, 100) for the %name and
%country parameters, then execute the resulting queries and
report an aggregate value of the observed runtime distribution
per query (usually, the average runtime per query template).
This aggregated score serves two audiences: First, the users
can evaluate how fit a specific system is for their use-case
(choosing, for example, between systems that are good in
complex analytical processing and those that have the highest
throughput for lookup queries). Second, the database architects
can use the score to analyze their systems’ handling of certain
technical challenges, like handling multiple interesting orders
or sparse foreign key joins [5].

In order for the aggregate runtime to be a useful measure-
ment of the system’s performance, the selection of parameters
should guarantee the following properties of the queries:
P1: the query runtime has a bounded variance: the average

runtime should correspond to the behavior of the major-
ity of the queries

P2: the runtime distribution is stable: a different sample of
100 parameter bindings should result in an identical
runtime distribution

P3: the query plan for all the parameters is the same: this
ensures that a specific query tests the system’s behavior
under the well-chosen technical difficulty (e.g., handling
voluminous joins or proper cardinality estimation for
subqueries etc.)

The standard way to get the parameter bindings for %name
and %country is to sample the values (uniformly, at random)
from all the possible names in the dataset. This is, for example,
how the classical TPC-H benchmark creates its workload;
since the TPC-H data is generated with simple uniform distri-
bution of values, the uniform sample of parameters guarantees
the properties P1-P3.

However, this technique does not work for benchmarks
that use real-world datasets (YAGO or DBpedia) or gen-
erate datasets with real-world distribution and correlations
(LDBC benchmark, which is based on S3G2 generator [7]).
In our example above, assuming that names and countries
are correlated, the behavior of the query changes significantly
depending on the selection of its parameters: if the %name is
Li, and the %country is China, the query is an unselective
join that tests the power of indexes. However, if we select John
and China as parameters, the query becomes a very selective
join that favors the ability of skipping unrelevant parts of the
index.

We note that the parameter generation problem is a general
problem in that it does not depend on the data model. For
concreteness though, in this paper we concentrate on RDF
benchmarks.

In this paper we make two contributions: first, we show that
the straightforward approach of generating parameter bindings
uniformly at random for benchmarking RDF systems fails
to deliver predictable and stable results; second, we define
the problem of generating parameter bindings that would
overcome these hurdles.

II. EXAMPLES

In this section we illustrate the statement that uniform
selection of parameters leads to unpredictable behavior of the
queries, thus making interpretation of the results very difficult.

We use two RDF benchmarks, Berlin SPARQL benchmark
(BSBM) [1] and LDBC Social Network benchmark [2]. For
BSBM, we consider queries from the Business Intelligence
(BSBM-BI) use case. For both BSBM and LDBC, the cor-
responding data generators were used to create datasets with
ca. 100 Million triples each. We employ Virtuoso 7 (Column
Store) as a SPARQL query engine, and run our experiments
on a commodity server with the following specifications: Dual
Intel X5570 Quad-Core-CPU, 64 Gb RAM, 1 Tb SAS-HD,
Redhat Enterprise Linux with 2.5.37 kernel.

E1: Runtime distribution has high variance When draw-
ing parameters uniformly at random, we encounter a very
skewed runtime distribution even for queries over uniformly
distributed syntactic data. In BSBM-BI benchmark, for ex-
ample, the runtime of the Query 4 (finds the feature with the
highest ratio between price with that feature and price without
that feature) has the variance of 674 · 106. This is caused by
the fact that the parameter of the query is the product type:
depending on how generic the type is (how high it is in the type
hierarchy), the amount of data touched by the query differs
greatly.

This issue becomes even more important for the LDBC
benchmark, where the data generator seeks to mimic some
of the properties of the real-world data: the generated data
has correlations and skewed data distributions. In this case,
naturally, the randomly generated parameter bindings result in
a very skewed runtime distribution.

Moreover, the distribution of runtime is far from normal: the
Kolmogorov-Smirnov test that measures the distance between
the runtime distribution of BSBM-BI Query 2 (finds the top
10 products most similar to a specific product) and the normal
distribution, results in the distance of 0.89 (with p-value
of 10−21). This value indicates that the observed runtime
distribution is extremely non-uniform.

E2: Sampling is not stable A single query in the bench-
mark is typically being executed several times with different
randomly chosen parameter bindings. It is therefore interesting
to see how the reported average time changes when we draw a
different sample of parameters. In order to study this, we take
Query 2 of the LDBC benchmark that finds the newest 20
posts of the user’s friends. We sample 4 independent groups
of parameter bindings (100 bindings in each group), run the
query with these parameters and report the aggregated runtime
numbers within individual groups (q10 and q90 are the 10th and
the 90th percentiles, respectively).

Time Group 1 Group 2 Group 3 Group 4
q10 0.14 s 0.07 s 0.08 s 0.09 s

Median 1.33 s 0.75 s 0.78 s 1.04 s
q90 4.18 s 3.41 s 3.63 s 3.07 s

Average 1.80 s 1.33 s 1.53 s 1.30 s

We see that uniform at random generation of query param-

eters in fact produces unstable results: if we were to run 4
workloads of the same query with 100 different parameters
in each workload, the deviation in reported average runtime
would be up to 40%, with even stronger deviation on the level
of percentiles and median runtime (up to 100%).

We observe similar behaviour of the BSBM-BI Query 2:
when it is executed with different groups of 100 random
parameter binding each, the mean runtime difference is up
to 15% between the groups, and the median value can vary
up to 25%.

E3: Average runtime is not representative In addition to
being far from uniform (E1), the query runtime distribution
can also be ”clustered”: depending on the parameter binding,
the query runs either extremely fast or surprisingly slow, and
the average across the runtimes does not correspond to any
actual query performance. We consider Query 4 of the BSBM
BI workload that finds the feature with the highest ratio
between price with that feature and price without that feature,
depending on the input parameter ProductType. The product
types in BSBM form a hierarchy: the higher the type is, the
more general it is and therefore the more products with this
type exist. A short summary of statistical properties of the
runtime distribution is given in the table below (where q95 is
the 95th percentile):

Min Median Mean q95 Max
59 ms 354 ms 3.6 s 17.6 s 259 s

Depending on the parameter selection, the query finishes
in either 300 ms to 400 ms, or in more than 17 seconds,
with almost no query in between those two groups. This way,
the arithmetic mean is over 10 times larger than the median.
Moreover, there is no actual query with the runtime close to
the mean: all of them are either much faster, or significantly
slower.

E4: Different plans for different parameters Finally,
the uniformly generated parameter bindings can lead to com-
pletely different plans for the same query template. It happens
because the cardinalities of the subqueries naturally depend on
the parameter bindings, and sometimes on the combination of
the parameters. For instance, the optimal plan for the LDBC
Query 3 (finds the friends within two steps that have been
to countries X and Y) can start either with finding all the
friends within two steps from the given person, or from all
the people that have been to countries X and Y: if X and
Y are Finland and Zimbabwe, there are supposedly very few
people that have been to both, but if X and Y are USA and
Canada, this intersection is very large.

We note that the plan variability is not a bad property per
se: indeed, this query forces the query optimizer to accurately
estimate the cardinalities of subqueries depending on input
parameters. However, the generated parameters should be
sampled independently from two different classes (countries
that are rarely and frequently visited together), to allow a
fair and complete comparison of different query optimization
strategies.

III. GENERATING PARAMETER BINDINGS

Here we define the formal problem of generating the pa-
rameter binding for RDF benchmark. In order to compare
two query plans (e.g., optimal plans for the same query
with different parameter bindings), we use the classical cost
function that takes into account the sum of intermediate results
produced during the plan’s execution [8]. It is formally defined
as follows:

Cout(T) =

{
0 if T is a scan
|T |+ Cout(T1) + Cout(T2) if T = T1 ./ T2

where T1 ./ T2 is a self-join in the triple store, or a join
between two clustered tables in clustered-property storage; the
cost function is oblivious to the underlying storage model.

In our experiments, the cost function Cout of the query
strongly correlates with its running time (ca.85% Pearson
correlation coefficient); therefore, if two queries have the same
optimal logical plans (with regards to Cout), they are expected
to have very similar running time.

We consider query Q (with parameters p1, . . . , pn) against
the RDF dataset D. Every parameter pi has the domain Pi,
and the domain of all the parameters is P = P1 × . . . × Pn.
Now, the formal problem of finding the parameter binding is
formulated as follows:

PARAMETERS FOR RDF BENCHMARKS: Split P into
subsets S1, . . . , Sk such that for every Si holds:

a: ∀(p1, . . . , pn) ∈ Si the query Q has the same optimal
query plan w.r.t.Cout

b: ∀(p1, . . . , pn) ∈ Si the cost Cout of the optimal plan for
Q is the same

c: query plan for parameters from Sk, k 6= i, is different
from the query plan for Si

Intuitively speaking, we want to cluster the parameters
domain into disjoint classes, such that for every class the query
Q has the same optimal plan with identical cost for all the
bindings (conditions a and b), and these optimal plans are
different across different parameter classes (condition c).

Since the cost function correlates with running time, queries
with identical optimal plans w.r.t.Cout are expected to have
close runtime, so the properties P1-P3 hold within each set
of parameters Si. Then, the workload generator can produce
separate parameter bindings by sampling them from every
parameter class independently, thus effectively splitting the
query into several cases. For example, BSBM-BI Query 4
would turn into two queries, Q4a (where type parameter
denote a very specific product’s type) and Q4b (with parameter
being a generic type of many products). Alternatively, the
benchmark authors can decide to tune the workload generator
such that it does not generate parameters from the certain
class Sj (if, for example, the total number of distinct classes
is too high). Reporting aggregated runtime only within these
automatically identified parameter classes will make the results
more comprehensible for both users and database architects.

Note that discovery of these sets of parameters is far from
trivial. In particular, even if we are given the set of parameters

Sj from the candidate solution, checking that it satisfies the
condition a would require finding the optimal join order for the
query Q for all binding from Sj , i.e. it boils down to solving
multiple NP-hard join ordering problems. We can, therefore,
only aim at a heuristic for it, which is the subject of our future
work.

IV. RELATED WORK

A number of RDF benchmarks has been proposed in recent
years [3], [4], [6], [9], [11]; the problem of finding the
parameter domains is relevant for all of them.

One step beyond the simple uniform random sample was
done for the TPC-DS benchmark, where parameters can be
drawn from the given ”step-shaped” distribution [10], [12].
Our work is aimed at generalizing this line of research for
complex distributions (in both real-world and generated data)
and for correlated data.

V. CONCLUSIONS

We introduce a general problem of generating the parame-
ters for RDF benchmarks. We demonstrated that conventional
uniform sampling is not providing stable and comprehensive
results. We consider the formal problem of clustering the
parameters domain into classes that yield the same query plan
with regards to the sum of intermediate results; the solution
of this clustering problem will ensure comparable and stable
results of benchmark queries.

ACKNOWLEDGMENT

This work is supported by the EU project LDBC (within
the FP7 framework).

REFERENCES

[1] Berlin SPARQL Benchmark. http://wifo5-03.informatik.uni-
mannheim.de/bizer/berlinsparqlbenchmark.

[2] LDBC Benchmark. http://ldbc.eu:8090/display/TUC/Interactive+Workload.
[3] LUBM. http://swat.cse.lehigh.edu/projects/lubm.
[4] C. Bizer and A. Schultz. The Berlin Sparql Benchmark. International

Journal On Semantic Web and Information Systems, 2009.
[5] P. Boncz, T. Neumann, and O. Erling. TPC-H Analyzed: Hidden

Messages and Lessons Learned from an Influential Benchmark. In
TPCTC, 2013.

[6] G. Demartini, I. Enchev, M. Wylot, J. Gapany, and P. Cudré-Mauroux.
BowlognaBench – Benchmarking RDF Analytics. In K. Aberer,
E. Damiani, and T. Dillon, editors, Data-Driven Process Discovery
and Analysis, volume 116 of Lecture Notes in Business Information
Processing, pages 82–102. Springer Berlin Heidelberg, 2012.

[7] P. Minh Duc, P. A. Boncz, and O. Erling. S3g2: A Scalable Structure-
Correlated Social Graph Generator. In Proceedings of TPC Technology
Conference on Performance Evaluation & Benchmarking 2012, 2012.

[8] G. Moerkotte. Building Query Compilers. http://pi3.informatik.uni-
mannheim.de/ moer/querycompiler.pdf.

[9] M. Morsey, J. Lehmann, S. Auer, and A.-C. Ngonga Ngomo. Dbpedia
sparql benchmark – performance assessment with real queries on real
data. In ISWC 2011, 2011.

[10] M. Poess and J. M. Stephens, Jr. Generating thousand benchmark queries
in seconds. In Proceedings of the Thirtieth international conference on
Very large data bases - Volume 30, VLDB ’04, pages 1045–1053. VLDB
Endowment, 2004.

[11] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. Sp2bench: A sparql
performance benchmark. In ICDE, pages 222–233, 2009.

[12] J. M. Stephens and M. Poess. Mudd: a multi-dimensional data generator.
SIGSOFT Softw. Eng. Notes, 29(1):104–109, Jan. 2004.

