
HiPy: Extracting High-Level Semantics from Python Code for
Data Processing

MICHAEL JUNGMAIR, Technical University of Munich, Germany
ALEXIS ENGELKE, Technical University of Munich, Germany
JANA GICEVA, Technical University of Munich, Germany

Data science workloads frequently include Python code, but Python’s dynamic nature makes efficient execution
hard. Traditional approaches either treat Python as a black box, missing out on optimization potential, or are
limited to a narrow domain. However, a deep and efficient integration of user-defined Python code into data
processing systems requires extracting the semantics of the entire Python code.

In this paper, we propose a novel approach for extracting the high-level semantics by transforming general
Python functions into program generators that generate a statically-typed IR when executed. The extracted
IR then allows for high-level, domain-specific optimizations and the generation of efficient C++ code. With
our prototype implementation, HiPy, we achieve single-threaded speedups of 2–20x for many workloads.
Furthermore, HiPy is also capable of accelerating Python code in other domains like numerical data, where it
can sometimes even outperform specialized compilers.

CCS Concepts: • Software and its engineering → Translator writing systems and compiler generators;
Runtime environments; • Information systems→ Data management systems.

Additional Key Words and Phrases: Python, High-Level Optimizations, Data Processing, Program Generation

ACM Reference Format:
Michael Jungmair, Alexis Engelke, and Jana Giceva. 2024. HiPy: Extracting High-Level Semantics from Python
Code for Data Processing. Proc. ACM Program. Lang. 8, OOPSLA2, Article 297 (October 2024), 27 pages.
https://doi.org/10.1145/3689737

1 Introduction
Data-processing pipelines frequently contain user-defined code written in Python, the lingua
franca of data analysts and data engineers. However, there is a high impedance mismatch between
high-performance data processing systems and the dynamic nature of Python. Data processing
systems such as relational databases or distributed dataflow systems like Spark [39] implement a set
of native operators with clearly defined semantics that allow for high-level logical optimizations and
efficient execution. However, as expressing complex computations in such a representation (e.g.,
SQL) is often non-trivial, data scientists turned to Python, whose dynamically-typed nature makes
it easy to express complex algorithms and stack together functionality from a huge ecosystem
of high-quality packages. Figure 1a shows an example of such a user-defined function written in
Python using the popular pandas dataframe library [20] and Figure 1b depicts an example SQL
query using that UDF. However, the same properties that make Python attractive to users also
make it very difficult to analyze, optimize, and execute efficiently.

Authors’ Contact Information: Michael Jungmair, Technical University of Munich, Munich, Germany, jungmair@in.tum.de;
Alexis Engelke, Technical University of Munich, Munich, Germany, engelke@in.tum.de; Jana Giceva, Technical University
of Munich, Munich, Germany, jana.giceva@in.tum.de.

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/10-ART297
https://doi.org/10.1145/3689737

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0000-0003-0890-1914
HTTPS://ORCID.ORG/0000-0003-1900-1292
HTTPS://ORCID.ORG/0000-0002-1926-3551
https://doi.org/10.1145/3689737
https://orcid.org/0000-0003-0890-1914
https://orcid.org/0000-0003-1900-1292
https://orcid.org/0000-0002-1926-3551
https://doi.org/10.1145/3689737
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

297:2 Michael Jungmair, Alexis Engelke, and Jana Giceva

def udf(table)
df=table.to_pandas()
df["w"]=df['s'].str.split(" ")
df["max_len"]= df["w"].apply(
lambda words:
max([len(p) for p in words])

)
df=df[df["max_len"]<5]
return to_db(df)

(a) Tabular UDF using pandas

select s from udf(select * from ...)

(b) SQLQuery

Map: 𝑓1 : 𝑠 → 𝑤

Map: 𝑓2 : 𝑤 →𝑚𝑎𝑥_𝑙𝑒𝑛

Filter:𝑚𝑎𝑥_𝑙𝑒𝑛 < 5

def 𝑓1(s : str):
return "string.split"(s)

def 𝑓2(w : list[str]):
max_len : i64 = "const" 0
"list.iter" p : s in w:
l : i64 = "string.len"(w)
max_len = "int.max"(max_len,l)

(c) Semantics in pseudo-IR

bool predicate(string s) {
size_t max_len = 0, pos = 0;
while (pos != string::npos) {
auto next = s.find(" ", pos);
if (next == string::npos)
break;

auto w = s.substr(pos, next-pos);
max_len = max(w.size(), max_len);
pos = nextPos + 1;

}
return max_len < 5;

}

(d) Generated C++ predicate de-
rived from the UDF

Fig. 1. Extracting the high-level semantics from an UDF allows for effective optimization and compilation.

Traditional, naïve integrations of user-defined Python code into data processing systems come
with major disadvantages. Having to treat Python code as a black box prevents both global logical
optimizations (e.g., query optimization, parallelization) and local optimizations of the UDF in
the context of the entire pipeline (e.g., constant folding). Furthermore, embedding the standard
Python implementation is substantially slower than optimized implementations due to calling and
interpretation overhead. Most existing research focuses on the latter problem, either improving
Python’s speed [4, 18, 26, 29, 32] or the integration [10, 12, 30], but these approaches do not help
with the former problem due to the persisting lack of insights into the user-defined Python programs.
The missing piece to address the open problem is an approach that extracts the entire high-level
semantics of Python programs in a way that it is easily digestible by data processing systems.
The extracted program representation should not be at a lower abstraction level than the Python
code itself (e.g., not LLVM IR), should reduce unnecessary abstractions (e.g., specific libraries), and
should be statically typed.

The closest prior works propose and apply different techniques for supporting embedded DSLs
in Python, typically using tracing [9, 13, 31, 37]. While these approaches also aim to extract some
semantics from Python programs, they only aim to capture DSL-related operations and, by design,
replace the semantics of some language constructs with their own. In contrast, we aim to extract
the entire high-level semantic from general Python programs.
In this paper, we propose a novel approach for effectively extracting the entire high-level

semantics from Python code in the form of a high-level, statically-typed IR. We first generate a
program generator from the input code and then run this generator using Python to produce the
IR. This way, we avoid the limitations of existing approaches and capture the whole program while
enjoying the benefits of using the Python interpreter itself to deal with Python’s complex and
dynamic semantics. The captured IR then allows for performing global and logical optimizations.
For the initial example, Figure 1c sketches the extracted high-level semantic. Operators such

as map and filter are extracted from pandas operations on data frames and two simple, statically
typed functions 𝑓1 and 𝑓2 are extracted from the callback functions. Global knowledge that columns
w and max_len are not used later allows fusing these operators into a single filter, enabling us to
apply logical optimizations (e.g., pushing the filter down the pipeline). Finally, we generate efficient
C++ code for the filter predicate as shown in Figure 1d.

We fully implement the proposed approach in HiPy, an end-to-end prototype system primarily
targeting UDFs and medium-sized data-engineering scripts. HiPy generates an SSA-based IR,
performs data-processing-related optimizations, and emits efficient C++ code. On data science

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

HiPy: Extracting High-Level Semantics from Python Code for Data Processing 297:3

Table 1. Overview of related work, classified by their primary goal.

Class Approach Primary Domain Examples Comment

General
Compiler

General Purpose PyPy [32], Pyston [29],
GraalPy [26]

General Purpose Cython [4], Nuitka[25] Conceptually: unrolling interpreter loop

Specialized
Compiler

AST Restricted Codon [35] Slightly different semantics and syntax
Bytecode Numerical Numba [18] Compiles numpy/numerical ops with LLVM
AST Numerical Hope [3] Compiles numerical operations to C++
AST Data Science Tuplex [38] Focus on UDFs, converts AST to LLVM

Support
Embedded DSLs

AST ML TorchScript (JIT) [1] Narrow focus on tensor operations
Tracing ML torch.fx [31]
Tracing Data Science AFrame [36], Grizzly [13],

PolyFrame [37], weld [27]
Virt.+Tracing ML Autograph [22] Only captures computations on tensors

Extract High-
Level Semantics

Generate Pro-
gram Generator

Data Science HiPy Our approach

workloads, HiPy achieves single-threaded speedups between 1.8x and 18x over CPython and pandas.
While primarily designed for data science workloads, HiPy also supports complex Python code in
other domains due to a novel, fine-granular mechanism to transparently fall back to an embedded
Python interpreter. Therefore, HiPy also shows good performance for other workloads, sometimes
even outperforming specialized compilers like Numba or Codon.

This paper makes the following main contributions:
• A novel methodology for extracting the high-level semantics in the form of a high-level
statically-typed IR tailored for Python by generating a program generator from input code.

• A novel approach for an automatic, fine-grained fallback to the Python interpreter, enabling
to support arbitrary Python functions without a substantial performance penalty.

• An end-to-end prototype system, HiPy, that has built-in support for relevant parts of Python’s
standard library, numpy, pandas, and scikit-learn, performs general and domain-specific
optimizations, and generates efficient C++ code.

In the remainder of this paper, we first revisit related work in section 2 and discuss why prior
work does not already solve the highlighted problem. Next, we explain the core methodology of
our approach in section 3 and describe the Python implementation in section 4. In section 5, we
explain how HiPy can be extended to support other libraries and discuss our implementation of
Python’s standard library, numpy, pandas, and scikit-learn. In section 6, we describe our end-to-end
system and evaluate it in section 7. Finally, we discuss different aspects like limitations, developer
experience, and security in section 8 before summarizing our findings.

2 Related Work
The gap between a large user-base of Python, especially in the area of data analytics, data engi-
neering, and machine learning, and the underwhelming performance compared to highly tuned
frameworks is well known. Likewise, extracting high-level semantics from imperative programs to
enable performance optimization and increase portability is a long-standing problem.
One way to approach the problem is program synthesis, which has not only been done for nu-

merical workloads [2, 8, 17], but was more recently also applied to Python. For example, SOAR [24]
translates between the APIs of different data frame and deep learning libraries. Nonetheless, the
slow performance of the synthesis process and, in the more general case, the difficulty to determine
whether the found solution is correct makes program synthesis impractical for many use cases.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

297:4 Michael Jungmair, Alexis Engelke, and Jana Giceva

Because Python’s flexibility makes analysis and optimizations difficult, different languages like
Julia [5] or, more recently, Mojo [21] have been proposed. However, such approaches have two
substantial downsides: first, they come with a new language having different syntax and semantics,
which increases the barrier of adoption. And second, they provide at most some degree of interfacing
to call existing Python code, but do not help with extracting high-level semantics of existing Python
packages, which are widely used in practice.

Additionally, a large variety of research has been conducted around improving Python’s perfor-
mance, both in the compiler community and in neighboring communities. We can classify existing
approaches by their main goal, as summarized in Table 1: the first class of systems are general-
purpose Python accelerators; the second class target direct compilation by restricting themselves to
a subset of Python; and the third class are systems that support embedded DSLS through different
techniques. In the remainder of this section, we cover these three classes in more detail.

2.1 Alternative Python Implementations
The relatively low performance of Python is a general problem, not only relevant to certain
domains of data-intensive computing, but also for general workloads, e.g., web servers. Thus,
different alternative implementations for Python try to reach a high degree of compatibility with
CPython, while improving the observable performance. Typical implementations that apply JIT
compilation such as PyPy [32], Pyston [29], or GraalPy [26] can speed up Python code by orders of
magnitude for selected workloads, while making smaller compromises with compatibility. Other
implementations like Cython [4] or nuitka [25] transform Python code to C code calling into the
Python interpreter ahead of time. Already this unrolling of the interpreter loop can bring noticeable
improvements with full compatibility. However, while such implementations can speed up Python
code in data processing pipelines [10, 12], they do not help with extracting the high-level semantics
to enable high-level, logical optimizations.

2.2 Specialized Python Compilers
In addition to the general-purpose Python implementations, various implementations specialize for
certain use-cases and workloads and do not aim for full compatibility. Most focus is on compiling
numerical functions to efficient machine code and parallelized execution of loops. Numba [18]
takes the generated Python bytecode, lifts it into the statically typed Numba IR, and then generates
efficient LLVM IR from it. In contrast, Hope [3] takes the abstract syntax tree, performs small
optimizations and translates it to C++ code. Similarly, Tuplex [38] directly generates the LLVM IR
from the AST of user-defined functions used in a Spark-like API. It supports a small set of selected
built-in functions and methods that are hard-coded in the code generation module.

Codon [35] aims to enable the efficient execution of domain-specific DSLs (e.g., bioinformatics)
expressed in Python syntax. It also restricts the set of supported features and built-in functionality
and does not aim for maintaining the same semantics. It uses a so-called bi-directional IR to
dynamically refine typed computations during later passes.
While these specialized Python compilers significantly improve the performance for their use

cases, they lack generality and are not designed to extract high-level semantics, as they typically
operate on an abstraction layer just above LLVM.

2.3 Supporting Embedded DSLs
Many prior works apply different techniques to support DSLs embedded into Python, with the goal
of capturing DSL-related operations, often representing custom semantics. Typically, the captured
operations are then executed by a domain-specific, optimized execution engine. The most common
cases are libraries that generate a declarative query (e.g., in SQL) from usages of a data frame

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

HiPy: Extracting High-Level Semantics from Python Code for Data Processing 297:5

library [13, 37] and machine learning frameworks generating computation graphs from Python
code [1, 22, 31]. Despite the different domains, prior work is designed to only capture DSL-related
operations while either failing or eagerly executing non-supported operations and functions. All
implementations in this category typically use one of three approaches: AST compilation, tracing,
or virtualization.

2.3.1 AST Compilation. Some implementations directly generate an intermediate from the abstract
syntax tree of a Python function. This is easy to implement (e.g., using Python’s ast module) and
can also cover control flow constructs. However, the dynamic nature of Python makes it difficult to
statically know the types of variables and thus the semantics, which depend on the types. Hence, this
approach is only useful for limited subsets of Python or selected domains. For example, PyTorch [1]
implements this approach in torch.script.jit. However, it does not support full Python, but
TorchScript, a subset of Python with a slightly different semantics. Due to the discussed limitations,
without explicit type annotations, every type is assumed to be a tensor. When calling other Python
functions from a function compiled by PyTorch, PyTorch attempts to recursively compile those
functions, too. This will often fail for functions not designed to be compiled by PyTorch, due to
limitations in the supported subset of Python. For user-defined functions, this can be avoided by
manually adding an @torch.jit.ignore annotation; PyTorch will not compile such functions and
instead call them at execution time using the Python interpreter. However, functions from other
libraries are therefore impossible to use, because users cannot annotate them.

2.3.2 Tracing. The idea of tracing is to supply a function with instances of tracing classes, which do
not eagerly execute operations, but instead track operations executed on them and construct some
form of IR, e.g., a computation graph or relational algebra tree. Tracing has two main advantages:
First, it is fairly simple to implement without requiring static analysis or type inference, thereby
avoiding the limitations of direct AST compilation and does not require deeper knowledge in
compilers. And second, if implemented carefully, tracing-based approaches can be made fully
compatible to the corresponding library (e.g., pandas), by materializing and converting intermediate
results once an unsupported operation is executed. Consequently, tracing is frequently used [13, 27,
31, 36, 37], especially to turn eager operations of an existing API into an intermediate representation
that is later executed with a different, typically faster execution back-end.

However, in practice there are also many limitations. (1) Implementing a replacement library with
strictly identical semantics is typically a substantial effort and thus, most research work only imple-
ments similar APIs, which leads to low adoption in practice. (2) While tracing manages to extract
high-level semantics, it only does so for a local subset of the entire program, i.e. only capturing the
parts that were implemented by the traced libraries. This rules out optimizations such as hoisting
independent operations out of loops and also makes it hard to efficiently execute DAG-structured
computations, because of redundant materializations. (3) Libraries like Pandas often include meth-
ods that take arbitrary call-back functions written in Python (e.g., pandas.DataFrame.apply),
which cannot be covered by tracing. (4) Executing parts of the code at an earlier stage assumes that
Python objects constructed during the tracing phase are still accessible when the generated IR is
executed (cross-stage persistence). However, in data processing systems, this assumption usually
does not hold when integrating user-defined Python code, for example due to distributed execution.
(5) By design, tracing is unable to capture control flow constructs like if-statements or loops.

In summary, tracing-based approaches only allow for extracting narrow, DSL-related parts, but
cannot extract the high-level semantics of an entire Python program, which is needed for a for a
deep and efficient integration into existing systems.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

297:6 Michael Jungmair, Alexis Engelke, and Jana Giceva

2.3.3 Virtualization. Virtualization [7] extends tracing-based approaches to also support native
control flow syntax by rewriting such syntax constructs in a prior step. This allows embedded
DSLs to overload language constructs with custom semantics deviating from Python’s semantics.
For example, TensorFlow’s Autograph [22] first rewrites Python code and replaces control flow
constructs like (e.g., if, while) with function calls (e.g., tf.cond), which, in the second step, are
captured during tracing. However, other limitations of tracing still remain, as only computations
on tracing objects are captured.

3 Core Methodology
In this paper, we propose a generic methodology for extracting the entire high-level semantics
from general Python functions without deviating from Python’s syntax and semantics. The goal of
this extraction is to generate a suitable intermediate representation (IR) that allows for high-level,
domain-specific optimizations and, afterward, compiling this IR into efficient machine code. This
is a major difference compared to the goals of prior work, which either captured a lower-level
representation for compilation or focused only on capturing DSL-related operations.

To be suitable for a large number of use cases, the proposed approach should be able to support
full Python, not only a narrow subset, capturing the semantics as good as possible. In order to reach
these goals, we make the following key design decisions for our approach:

• Explicit annotations. The semantics are only captured for functions that are explicitly
annotated with a Python decorator. Writes to global variables and modules are out of scope,
as they are uncommon for data-intensive workloads. We assume that the entry function (e.g.,
the one registered as UDF to a data-processing framework) as well as its argument types are
known at IR generation time.

• Simple, high-level, statically-typed IR. The generated IR should balance simplicity to
be easily adoptable by domain-specific back-ends, and remain high-level enough to enable
high-level, domain-specific optimizations. Thus, the extraction process should perform the
heavy lifting of translating complex Python code into simple IR operations, while still using
high-level types like multi-dimensional arrays and tables.

• Modular implementation. Following Python’s language design, the approach should be
implemented in a modular way, keeping the implementation of the core logic small. This also
eases extending support to other modules and libraries by writing idiomatic Python code.

• Fallback to Python. Python is a highly dynamic language with many complex features and
libraries, making it non-trivial to derive a simple, statically-typed intermediate representation.
Additionally, Python and its ecosystem are so large that supporting the extraction of semantics
is infeasible for all of it. The proposed approach should automatically detect problems and
unsupported modules during the extraction process, and generate special IR operations
that fall back to the Python interpreter at run-time. This is much more fine-grained and
transparent in contrast to, e.g., PyTorch’s approach of falling back to Python at function
granularity and only for explicitly user-annotated functions.

• Carefully handling mutable objects. Python is not only highly dynamic, but most objects
are mutable, increasing the difficulty of generating an intermediate representation with the
same semantics. Our approach introduces extra measures for correctly handling mutable
objects and especially avoids inconsistencies that quickly occur with a naïve implementation.

Our approach is based on generating program generators: we first generate a program generator
from the Python code and then execute this program generator to generate the high-level interme-
diate representation. In the first step, a program generator is generated by automatically rewriting
the abstract syntax tree, similar to how Python code is rewritten for virtualization. Afterward, the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

HiPy: Extracting High-Level Semantics from Python Code for Data Processing 297:7

def pow(b: int, e: int):
if e == 0:

return 1
else:

return b * pow(b, e-1)

def pow𝑠𝑝𝑒𝑐(b: int):
return b * b

Fig. 2. Partial evaluation of pow with e=2.

generated program generator is executed using Python, which allows us to leverage the Python
interpreter to generate correct IR for complex Python semantics. Thereby, we avoid the limitations
of tracing and virtualization, which can only capture operations on traced objects, while enjoying
the advantages of it by using Python for executing the program generator.

In the following section, we first derive our conceptual approach from prior work around staging
and partial evaluation in subsection 3.1. Afterward, in subsection 3.2, we discuss the design of the
emitted IR that allows for capturing both opaque Python types and operations, but also high-level
types and operations, before we discuss the implementation in section 4.

3.1 Adapting the First Futamura Projection
Staging and Partial Evaluation. For a function 𝑓 and inputs 𝑖𝑆 , 𝑖𝐷 , where 𝑖𝑆 is known at an earlier

stage before 𝑖𝐷 , we can apply staging [15]: By splitting 𝑓 into 𝑓1 and 𝑓2 such that 𝑓 (𝑖𝑆 , 𝑖𝐷) =

𝑓2 (𝑓1 (𝑖𝑆), 𝑖𝐷), 𝑓1 (𝑖𝑆) can be executed at an earlier stage than 𝑓2, e.g. during compilation.
Partial evaluation is a special case of staged execution: in the earlier stage, the function𝑚𝑖𝑥1

specializes a general program 𝑃 on the statically known input values 𝑖𝑆 to the new function 𝑃𝑠𝑝𝑒𝑐 ,
which computes the result with only the dynamic input values 𝑖𝐷 . A common example in literature
is specializing the power function as shown in Figure 2.

𝑃𝑠𝑝𝑒𝑐 :=𝑚𝑖𝑥 (𝑃, 𝑖𝑆) ⇒ 𝑃 (𝑖𝑆 , 𝑖𝐷) = 𝑃𝑠𝑝𝑒𝑐 (𝑖𝐷)

The first Futamura Projection. Futamura discovered that applying the𝑚𝑖𝑥 function to an inter-
preter 𝑖𝑛𝑡 for a programming language and one program 𝑃 produces a compiled Program 𝑃𝐶 that
computes the same without interpretation overhead [11].

𝑃𝐶 :=𝑚𝑖𝑥 (𝑖𝑛𝑡, 𝑃) ⇒ 𝑖𝑛𝑡 (𝑃, 𝑎𝑟𝑔𝑠) = 𝑃𝐶 (𝑎𝑟𝑔𝑠)
So in principle, generating a semantically equivalent IR from a Python program is equivalent to
computing the first Futamura projection.

Python is different. The literature around staging, partial evaluation, and the Futamura projections
typically discuss the application for statically-typed, functional programming languages. In contrast,
Python is dynamically typed and programs have a large amount of state, both explicit and implicit.
This leads to problems when we try to apply the first Futamura projection, as the semantics of
a Python function 𝑓 are not fully specified by 𝑓 itself: First, the arguments have a significant
impact, because most of Python’s semantics are defined in the methods of the argument objects. For
example, in Python, the semantics of a+b is defined by special __add__ methods. Because Python
is also dynamically typed, we do not know which method defines the semantics for a + without the
actual input arguments, which are not available at this early stage. And second, the environment
defines available modules and functions, which can also override built-in functions, e.g. a local
function print overriding the built-in function. On the top of that, writing the𝑚𝑖𝑥 function for
Python is highly non-trivial because of the complexity and also side-effects of operations.
1𝑚𝑖𝑥 is the historically used name.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

297:8 Michael Jungmair, Alexis Engelke, and Jana Giceva

class int𝑆:
def __add__(self, other):

built-in method
...

def addint(x: int, y: int):
return x + y

(a) Example input, we specialize on the
parameters being of type int.

def addint(%0, %1):
%2 = int.add %0, %1
return %2

(b) Generated IR from addint𝑝𝑔𝑒𝑛 ,
wrapped with signature and return.

class int𝑆𝑝𝑔𝑒𝑛: # virtual class for int𝑆

def __init__(self):
self._ir = generate_new_ir_name()

def __add__𝑝𝑔𝑒𝑛(self, other):

if not isinstance(other, int𝑆𝑝𝑔𝑒𝑛):
raise NotImplementedError()

res = int𝑆𝑝𝑔𝑒𝑛() # create new virtual object

print(f"{res._ir} = int.add {self._ir}, {other._ir}")
return res

...

def addint𝑝𝑔𝑒𝑛(x: int𝑆𝑝𝑔𝑒𝑛, y: int𝑆𝑝𝑔𝑒𝑛):

Generate IR for addition; returns the IR value of result
return x.__add__𝑝𝑔𝑒𝑛(y)

(c) Result of applying 𝑐𝑜𝑔𝑒𝑛 to the input. The virtual class int𝑆

does not operate on integer values, but instead generates IR.

Fig. 3. Conceptual approach: applying 𝑐𝑜𝑔𝑒𝑛 to the input yields an IR generator. The class int is conceptually
split into 𝑖𝑛𝑡𝑆 and 𝑖𝑛𝑡𝐷 , where the latter only contains the concrete integer value.

Adapting the Futamura projection for Python. We propose to adapt the concept of the first
Futamura projection to Python’s properties. In particular, we propose to:
(1) Conceptually split every Python object𝑂 into a static part𝑂𝑆 , containing methods and static

attributes, and a dynamic part𝑂𝐷 with the attributes only known at run-time. Consequently,
functions would now consume two sets of arguments, the static and the dynamic parts.
This allows for applying partial evaluation on the static parts of the arguments, yielding a
specialized function:

𝑓𝑠𝑝𝑒𝑐 :=𝑚𝑖𝑥 (𝑃𝑦𝑡ℎ𝑜𝑛, 𝑓 , 𝑒𝑛𝑣, 𝑎𝑟𝑔𝑠𝑆) ⇒ 𝑃𝑦𝑡ℎ𝑜𝑛(𝑒𝑛𝑣, 𝑓 , 𝑎𝑟𝑔𝑠) = 𝑓𝑠𝑝𝑒𝑐 (𝑎𝑟𝑔𝑠𝐷)
(2) Follow the idea of generating program generators [14] and avoid the monolithic, hard to

implement partial evaluator𝑚𝑖𝑥 by utilizing a 𝑐𝑜𝑔𝑒𝑛 function that transforms a program
𝑃 into a program generator 𝑝𝑔𝑒𝑛 that emits the specialized function in an intermediate
representation (IR). Since the static part of input arguments 𝑎𝑟𝑔𝑠𝑆 also contains Python
methods, we also apply 𝑐𝑜𝑔𝑒𝑛 to them so that method calls will also generate IR.

𝑓𝑝𝑔𝑒𝑛 := 𝑐𝑜𝑔𝑒𝑛(𝑃𝑦𝑡ℎ𝑜𝑛, 𝑓) ⇒ 𝑚𝑖𝑥 (𝑃𝑦𝑡ℎ𝑜𝑛, 𝑓 , 𝑒𝑛𝑣, 𝑎𝑟𝑔𝑠𝑆) = 𝑓𝑝𝑔𝑒𝑛 (𝑒𝑛𝑣, 𝑎𝑟𝑔𝑠𝑆𝑝𝑔𝑒𝑛)
When applying 𝑐𝑜𝑔𝑒𝑛 to a class, we will refer to the result as virtual classes and instances of

these as virtual objects. Figure 3 sketches a conceptual implementation in Python.

3.2 SSA-Based Target IR
Although our abstract approach is independent of the intermediate representation used, an im-
plementation needs to decide on one specific IR. In this section, we describe the design of our IR
which we use for our later implementation.

Structure. Structurally, a module contains a set of global imports, akin to Python’s import, Python
source code for functions required for the fallback, and, as the main part, a set of functions. A
function has a set of arguments and produces a single result. The body is a list of operations in SSA
form, where the last operation must be the single return operation.

Operations. To make the IR flexible and easily extendable, only few operations exist and most
functionality is modeled using builtin calls, which specify the operation through a string operand.
This way, potential back-ends can implement different sets of built-in operations without the need

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

HiPy: Extracting High-Level Semantics from Python Code for Data Processing 297:9

to change the IR. Built-in operations that are not supported by the back-end can be handled by
falling back to Python using the normal fallback mechanism. The few actual IR operations are
for modeling constants and Python interoperability, i.e., importing modules, getting and setting
attributes, and calling python objects.

Control Flow. For control flow, there is a single structured control flow operation, if, which has
two nested operation lists and yields results depending on the branch. Other control flow like loops
is represented by a built-in (e.g., range.iter) that takes a callback function called for every value.
As a consequence, our IR has no 𝜙-nodes. This approach not only simplifies the IR, analysis, and
optimizations, but maintains the possibility to generate efficient machine code.

Table 2. Types in our IR and examples for corresponding Python source types.

Type Description Example source

pyobj Opaque Python object
void Type of None Python NoneType
bool Boolean type Python bool
int Variable-width integer Python int
i𝑁 Fixed-width integer numpy.int64
f32/f64 Floating-point types Python float, numpy.single
str Byte sequence Python str/bytes
record[𝑛𝑎𝑚𝑒:𝑡𝑦𝑝𝑒,...] Immutable struct Python tuple/slice
list[𝑡] List with homogeneous types Python list
dict[𝑘,𝑡] Dict with homogeneous types Python dict
array[𝑠ℎ𝑎𝑝𝑒 x 𝑡𝑦𝑝𝑒] 𝑛-dimensional array type numpy.ndarray
column[𝑡𝑦𝑝𝑒] Data column pandas.Series
table[𝑛𝑎𝑚𝑒:𝑡𝑦𝑝𝑒,...] Table pandas.DataFrame
function_ref(...)→int Function reference Used for lambda

Data Types. The set of supported data types is targeting the needs of data science workloads;
Table 2 gives an overview. The primitive types closely correspond to standard types in Python
or numpy. We keep variable-width integers separately for correctness, but a back-end could still
decide to implement slightly different semantics and model them as 64-bit integers. Python’s str
and bytes types are only distinguished by the operations performed on them and are unified in the
IR, as they both store an immutable sequence of bytes. The record type represents an immutable
struct mapping field names to stored values and is used to implement tuples and other immutable
classes (e.g., slice, range). Typed list and dictionary types correspond to the corresponding Python
classes, but can only store the annotated types. We include special, high-level types designed for
data processing libraries representing n-dimensional arrays, tables, and table columns.

To implement fine-granular fallback to CPython, the IR can represent and operate on the pyobj
type, which represent an opaque, reference-counted Python object. Through this type the IR is also
able to represent lists and dictionaries that contain objects of different types (e.g. list[pyobj]).

4 Implementation
In this section, we describe the practical implementation of the 𝑐𝑜𝑔𝑒𝑛 function, which transforms
Python functions into IR generators, also referred to as transformed code.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

297:10 Michael Jungmair, Alexis Engelke, and Jana Giceva

Table 3. Transformation rules for 𝑐𝑜𝑔𝑒𝑛.

⟦def f1(a1,...,a𝑛, p=d, *args, **kwargs):
body

⟧𝑝𝑔𝑒𝑛

= def f1(a1,...,a𝑛, p=None, *args, **kwargs, ctx=None):
p = ⟦𝑑⟧𝑚 if p is None else p
args = ctx.create_tuple(args)
kwargs = ctx.create_dict(kwargs)
⟦𝑏𝑜𝑑𝑦⟧

⟦var⟧𝑝𝑔𝑒𝑛 = ctx.get_var(var)

⟦var=expr⟧𝑝𝑔𝑒𝑛 = var=⟦expr⟧𝑝𝑔𝑒𝑛
⟦f(v1,...,v𝑛, k1=x1,...,k𝑛=x𝑛)⟧𝑝𝑔𝑒𝑛 = ctx.call(⟦f⟧𝑝𝑔𝑒𝑛, [⟦v1⟧𝑝𝑔𝑒𝑛,...], {"k1":⟦x1⟧𝑝𝑔𝑒𝑛,...})

⟦l op r⟧𝑝𝑔𝑒𝑛 = ctx.binary_op(⟦l⟧𝑝𝑔𝑒𝑛,⟦r⟧𝑝𝑔𝑒𝑛, "__op__", "__rop__")

⟦if cond:
ibody

else:
ebody⟧𝑝𝑔𝑒𝑛

with read as set of read variables and changed
as set of changed variables
Ternary expressions are handled similarly using
the same _if method.

= def f𝑖 𝑓 (read...):

⟦ibody⟧𝑝𝑔𝑒𝑛,𝑛𝑒𝑠𝑡𝑒𝑑
return (changed...,)

def f𝑒𝑙𝑠𝑒(read):
⟦ebody⟧𝑝𝑔𝑒𝑛,𝑛𝑒𝑠𝑡𝑒𝑑
return (changed...,)

try:
changed... = ctx._if(⟦c⟧𝑝𝑔𝑒𝑛, [changed...,], f𝑖 𝑓 , f𝑒𝑙𝑠𝑒)

except EarlyReturn e:
return e.val

⟦return e⟧𝑝𝑔𝑒𝑛 = return ⟦e⟧𝑝𝑔𝑒𝑛
⟦return e⟧𝑝𝑔𝑒𝑛,𝑛𝑒𝑠𝑡𝑒𝑑 = raise EarlyReturn(⟦e⟧𝑝𝑔𝑒𝑛)

⟦lambda a1,...,a𝑛: body⟧𝑝𝑔𝑒𝑛
with𝐶 being the set of all bound variables and
⟦expr⟧𝑐𝑙𝑜𝑠𝑢𝑟𝑒 being a transformation of each
occurrence of 𝑐 ∈ 𝐶 to __closure__["c"]. See
Sec. 4.5.

= def f𝑝𝑔𝑒𝑛(a1,...,a𝑛):
return ⟦body⟧𝑝𝑔𝑒𝑛

def f𝑐𝑙𝑜𝑠𝑢𝑟𝑒(a1,...,a𝑛, __closure__):
return ⟦⟦body⟧𝑐𝑙𝑜𝑠𝑢𝑟𝑒⟧𝑝𝑔𝑒𝑛

def f𝑝𝑦(a1,...,a𝑛, __closure__):

return ⟦body⟧𝑐𝑙𝑜𝑠𝑢𝑟𝑒
ctx._lambda(f𝑝𝑔𝑒𝑛,

lambda b: b(f𝑐𝑙𝑜𝑠𝑢𝑟𝑒, {"c": c for 𝑐 ∈ 𝐶}),
lambda b: b(f𝑝𝑦, {"c": c for 𝑐 ∈ 𝐶}))

⟦try:
tbody

except:
ebody⟧𝑝𝑔𝑒𝑛

with read as set of read variables and changed
as set of changed variables

= def f𝑡𝑟𝑦(read...):

⟦tbody⟧𝑝𝑔𝑒𝑛,𝑛𝑒𝑠𝑡𝑒𝑑
return (changed...,)

def f𝑒𝑥𝑐𝑒𝑝𝑡 (read):

⟦ebody⟧𝑝𝑔𝑒𝑛,𝑛𝑒𝑠𝑡𝑒𝑑
return (changed...,)

try:
changed... = ctx._try(⟦c⟧𝑝𝑔𝑒𝑛, [changed...,], f𝑡𝑟𝑦, f𝑒𝑥𝑐𝑒𝑝𝑡)

except EarlyReturn e:
return e.val

⟦c⟧𝑝𝑔𝑒𝑛 # c is literal = ctx.constant(c)

⟦o.attr⟧𝑝𝑔𝑒𝑛 = ctx.get_attr(⟦o⟧𝑝𝑔𝑒𝑛, "attr")

⟦o.attr= 𝑒⟧𝑝𝑔𝑒𝑛 = ctx.set_attr(⟦o⟧𝑝𝑔𝑒𝑛, "attr", ⟦e⟧𝑝𝑔𝑒𝑛)

⟦[v1,...,v𝑛]⟧𝑝𝑔𝑒𝑛 = ctx.create_list([⟦v1⟧𝑝𝑔𝑒𝑛])

⟦for e in l:
body⟧𝑝𝑔𝑒𝑛

= def f𝑙𝑜𝑜𝑝(e, read_only, iter_vals):

⟦body⟧𝑝𝑔𝑒𝑛,𝑛𝑒𝑠𝑡𝑒𝑑
return (iter_vals...,)

changed... = ctx._for(⟦l⟧𝑝𝑔𝑒𝑛,[read_only...],[iter_vals...],f𝑙𝑜𝑜𝑝)

4.1 Transforming Python Functions to Program Generators
𝑐𝑜𝑔𝑒𝑛 is implemented as a Python function that acts as a decorator and transforms the decorated
function by rewriting the abstract syntax tree. To generate the IR in a more useful representation
and avoid producing large, redundant ASTs for specific parts, the transformed function gains an
extra ctx parameter of type GeneratorContext. This class handles both the IR construction as
well as the non-trivial logic for handling control flow.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

HiPy: Extracting High-Level Semantics from Python Code for Data Processing 297:11

@cogen
def abs(x):

return -x if x<0 else x

def abs(x, ctx):
def if_fn(x, ctx):

tmp = ctx.neg(ctx.get_by_name(x))
return (_tmp,)

def else_fn(x, ctx):
_tmp = ctx.get_by_name(x)
return (_tmp,)

_islt=ctx.perform_binop(left=ctx.get_by_name(x), right=ctx.constant(0),
left_method='__lt__', right_method='__gt__')

return ctx._if(cond=_islt, bodyfn=if_fn, elsefn=else_fn, inputs=[x])[0]

Fig. 4. 𝑐𝑜𝑔𝑒𝑛 in practice: Applied as Python decorator, it generates a Python function that generates IR by
calling methods of the GeneratorContext

The transformation consists of four steps: first, the Python code for the decorated function is
retrieved using the inspect module, and is parsed using the standard Python ast module. Second,
some constructs like list comprehensions are rewritten into simpler, equivalent forms, e.g., an
explicit loop. Third, the AST is rewritten according to the rules in Table 3. Finally, the rewritten
AST is compiled using Python’s built-in compile to yield the modified Python function. Figure 4
shows the effect of this transformation for an example function. Every Python expression and
statement is transformed into calls to the GeneratorContext object, which will generate the IR.

Due to the nature of the Python language, this transformation process shows many similarities to
the virtualization approach proposed by Decker et al. [9]. However, originating from our different
goals, there are also differences: First, while virtualization only focuses on rewriting constructs
that are of interest for the embedded DSL and cannot be already overloaded in Python (e.g., control
flow), we need to capture all constructs include list literals, operators, and object accessors. This also
allows us to easily introduce an extra layer of indirection later in subsection 4.7. Second, *args and
**kwargs require special handling for the same reason. Third, for objects like lambdas that might
need to be converted to a Python object during fallback, we need to generate multiple versions of
the body (cf. subsection 4.5).
Some of the complex cases resulting from Python’s language semantics are handled similarly

to the approaches already discussed by Decker et al. [9] in the context of virtualization. Python’s
scoping rules need special care: for example, when wrapping the body of if statements, loops,
and try statements as functions, the code must explicitly update locally changed variables in the
function scope afterwards. We can avoid the complexities of directly supporting scoping keywords
(e.g., nonlocal) through the automatic fallback. Variables of closures are explicitly captured and
the function body is transformed accordingly (cf. Table 3). Nested return statements, e.g., inside
if statements, are rewritten to raise an exception; at call sites we wrap the call with try/except
statements to propagate the result.

4.2 Virtual Objects and Types
The core idea of our approach is to use the Python interpreter at generation time to run the
transformed code. Generally, every virtual object corresponds to exactly one IR value. Every virtual
object has a high-level, virtual type, which holds type information not expressed in the IR. For
example, both range and tuples are expressed as record in the IR, but are different types in
Python. A virtual type has sufficient information to construct a new virtual object, for example, to
represent the result of a call to a built-in function.
Figure 5 depicts a basic implementation of the virtual object and type classes necessary for

implementing integers and addition on them. Methods annotated with @pgen are not transformed
and implement the IR generation explicitly. For example, __add__ directly calls the gen_builtin
method on the supplied GeneratorContext, supplying the virtual return type (IntType) and the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

297:12 Michael Jungmair, Alexis Engelke, and Jana Giceva

class VirtualType:
@abstractmethod
def ir_type(self) # IR type for this type
@abstractmethod
def construct(self, val: ir.Value) # new virt object

class VirtualObject:
def __init__(self, irval: ir.Value):

self._irval = irval
def __irval__(self):

return self._irval
@abstractmethod
def __virttype__(self) # get virtual type

class IntType(VirtualType):
def ir_type(self):

return ir.int
def construct(self, val: ir.Value):

return _int(val)

@cogen_class
class _int(VirtualObject):

def __virttype__():
return IntType()

@pgen # => not transformed, emits IR explicitly
def __add__(self, other, ctx: GeneratorContext):

if not isinstance(other, _int):
raise NotImplementedError()

return ctx.gen_builtin("int.add",
IntType(), [self, other])

@cogen # => transformed to program generator
def __iadd__(self, other):

return self + other

Fig. 5. Basic implementation required for the orig-
inal example.

class PyObjType(VirtualType):
def ir_type():

return ir.pyobj
def construct(val: ir.Value):

return pyobject(val)

@cogen_class
class pyobject(VirtualObject): # opaque Python object

def __init__(irval: ir.Value):
self.__irval__ = irval

@pgen
def __add__(self, other, ctx: GeneratorContext):

return ctx.gen_builtin("python.operator.add",
PyObjType(), [self, other.__topython__()])

@cogen
def __topython__(self):

return self # already a pyobject

@cogen_class
class _int(VirtualObject):

...
@pgen
def __topython__(self, ctx: GeneratorContext):

return ctx.gen_builtin("int.to_python",
PyObjectType(), [self])

class GeneratorContext:
def binary_op(left, right, name, rname):

try:
getattr(left, name)(right, self)

except NotImplementedError:
try:

getattr(right, rname)(left, self)
except NotImplementedError:

Fallback, convert left to pyobject
left_py = left.__topython__()
getattr(left_py, name)(right, self)

Fig. 6. Adding automatic fallback to Python.

def pyfn(x):
...

@compiled
def foo():

x = ...
y = pyfn(x)

(a) Calling Python functions

#numpy/__init__.py
@compiled
def zeros(..., order='C', ...):

if order != 'C':
raise NotImplementedError()

#main.py
array=numpy.zeros(10, order='F')

(b) Unsupported functionality

if cond:
x = 0.0

else:
x = 0

x cannot be statically typed

(c) Diverging types in control
flow

Fig. 7. Three situations in which the proposed framework falls back to the Python interpreter.

arguments. The gen_builtin method will then collect the IR values from the virtual objects
provided as arguments, create and emit a new builtin IR operation, and construct a virtual _int
object using the provided type. In contrast, __iadd__ (in-place addition like x+=1) uses the @cogen
annotation because the addition operator is already defined and no explicit IR generation is required.

4.3 Fine-Grained Fallback to Python
Already for the addition operator, a fallback to Python might be required, either because the virtual
object has no __add__ method or because the implementation does not support the supplied type
combination. Figure 6 outlines the required extensions to support this. First, we need virtual type
(PyObjType) and virtual object (pyobject) classes to represent opaque Python objects. This virtual
object class implements __add__ (and others) by converting the argument to a virtual Python

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

HiPy: Extracting High-Level Semantics from Python Code for Data Processing 297:13

object (pyobject) and generating a python.operator.add built-in operation. We do not directly
call __add__ on the Python object, as this would have different semantics and not try __radd__
in case of exceptions. Second, every virtual object needs to implement a __topython__ method
that converts the current state into an equivalent pyobject. Finally, the binary_op method of the
GeneratorContext will detect exceptions and perform the fallback to Python by converting the
left argument to a pyobject and calling the corresponding method on it.

For other Python features, the fallback is implemented similarly. When an unannotated Python
function is encountered (Figure 7a), e.g., from a not-yet supported module, the call will be executed
in Python. A failure to generate native IR for a specific feature in a pgen-function is signaled by
raising a NotImplementedError (Figure 7b). This exception is caught by the GeneratorContext,
which converts the corresponding arguments to Python and generates a Python call operation.
Another case that causes fallbacks are diverging types for a variable (Figure 7c): when multiple
control flow paths lead to a variable having different types, it will be converted to a Python object.

In general, the fallback is performed on the finest-granular operation, i.e., the fallback is invoked
for the current operation as soon as the generation fails. However, when, e.g., one operation inside
the list.append method fails, it is more appropriate to apply the fallback to the entire append
method. Thus, we defer handling exceptions if we are inside a function or method having a built-in
Python equivalent.

4.4 Eager Execution and Lazy IR Generation
Previously, we asserted that every virtual object corresponds to exactly one IR value. However, in
some cases, it makes sense to carefully lift this restriction and defer generating IR operations and
values. This allows for virtual objects that do not hold an IR value, but instead have an unmaterialized
state (stored in Python objects) that is not yet captured in the IR. If the IR value is required at a
later point, the method __irval__ on such objects will cause a materialization of the state into IR
and a transition to a materialized virtual object.
The possibility of maintaining unmaterialized state is crucial for containers like lists or dic-

tionaries that can contain inconsistently-typed objects. Without unmaterialized state, one would
have to immediately fallback to Python objects to, e.g., create a list with different types ([1,"a"]).
Often, however, such inconsistently-typed containers are deconstructed again shortly afterwards
(e.g., pandas.DataFrame.from_dict takes inconsistently-typed dictionaries as argument). We
implement concrete subclasses for lists and dicts that store the contained virtual objects as Python
objects and support a subset of the operations generating IR, for example, accessing an entry using
a _const_int.

Another benefit of unmaterialized state is constant folding: if both operands of, e.g., the addition
1+ 1 are unmaterialized virtual objects, we eagerly evaluate such expressions during the generation,
again resulting in an unmaterialized virtual object, in the example holding a Python integer of value
2. By subclassing these unmaterialized virtual objects (e.g., _const_int) from the corresponding
materialized virtual object class (e.g., _int), we can selectively implement constant-folding for
supported operations, while every other operation is handled by the base class.

Compared to approaches like lightweight modular staging [33], we do not mark selected values as
being executed in a later stage and execute everything else immediately. Instead, to avoid the need
for cross-stage persistence, our approach allows for implementing eager execution as optimization
for selected methods, where the result can be materialized in the IR.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

297:14 Michael Jungmair, Alexis Engelke, and Jana Giceva

4.5 Implementing Lambda Functions
Lambda functions (and nested functions) are frequently used to pass specific behavior to other
functions. However, implementing them requires handling captured variables. There are three
different cases to handle and for each of these we generate one variant as shown in Table 3.
(1) The lambda is called explicitly. For this case, we apply 𝑐𝑜𝑔𝑒𝑛 to the lambda and rely on

Python’s built-in capturing semantics (f𝑝𝑔𝑒𝑛).
(2) The lambda is passed to a built-in IR operation (e.g., range.iter for iterating over a range).

For this case, we apply 𝑐𝑜𝑔𝑒𝑛 to the lambda, but rewrite accesses to captured variables to go
through an extra __closure__ record passed as argument (f𝑐𝑙𝑜𝑠𝑢𝑟𝑒). f𝑐𝑙𝑜𝑠𝑢𝑟𝑒 is then used to
generate an IR function for a given set of argument types.

(3) The lambda is passed to Python. For this case, we do not apply 𝑐𝑜𝑔𝑒𝑛, but just rewrite
accesses to captured variables to go through a lookup dictionary passed as argument (f𝑝𝑦).
The captured virtual objects are converted to Python and f𝑝𝑦 is then partially evaluated
regarding the closure argument, yielding a bound Python lambda function.

4.6 State Modifications During IR Generation and Type Inference
By design, during IR generation also state modifications occur, including emitting IR operations,
transitions as discussed in subsection 4.7, and changes to unmaterialized state (e.g., appending to a
_concrete_list). However, without additional care, these side-effects can lead to wrong results:
for example, if one branch of an if-statement modifies an unmaterialized object, it must be restored
to the previous value for the else-branch.

We solve this problem by implementing “transactional” behavior, similar to transactions in a data-
base system. In the affected methods of the GeneratorContext, we wrap the problematic sections in
a transaction that captures all modifications to the state (with self.transaction() as T:). Later,
the captured changes can be analyzed and committed (T.commit()) or rolled-back (T.abort()).
For example, to implement an if-statement, both branches are evaluated and wrapped in two

separate transactions that can be rolled back. Thus, both branches can only observe the side-effects
that were present before the if-statement. Afterwards, the collected IR operations are emitted as
part of the generated if operation. Changes to unmaterialized state are merged and consolidated,
similar to type inference as discussed below.

Type Inference. With our approach, the need for explicit type inference only arises when there
are two incoming edges in a control flow graph. This is the case for if-statements where a common
type must be found for yielded results from the two branches, but also for loops where the types
must stay the same independent of the number of iterations.

The required consolidation is implemented in a modular way. Every virtual object can implement
a __merge__ method to consolidate the types of itself and another virtual object. It decides on a
consolidated result type and returns it together with two functions that generate IR in order to
convert both virtual objects to this type. If such a consolidation is not possible, e.g., because of
conflicting types, the consolidated type will be pyobject.
For an if-statement, the yielded virtual objects are compared pair-wise and, if necessary, the

conversion functions produced by __merge__ will be used to convert the result of both branches
to the common type before yielding them. For loops, type inference is more challenging as the type
of the values defined before the loop influences the loop’s behavior and the type of iteration values.
Thus, we perform a fix-point iteration by executing the loop’s body, calling the merge function for
all changed values, converting only the objects defined before the loop, and finally resetting all
side-effects. Only when the types of all changed variables stay the same after one loop iteration,
we actually generate the IR for the loop.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

HiPy: Extracting High-Level Semantics from Python Code for Data Processing 297:15

Unmaterialized
_const_int

_concrete_list

Materialized _int, _list

pyobject pyobject

__irval__()

__topython__()

Fig. 8. Different virtual object classes with examples
and possible transitions.

l is an unmaterialized _concrete_list
l = [1, 2, 3]
Create a new pyobject for l
converted = l.__topython__()
Append a new value to the pyobject
converted.append(13)
Without further measures, this would modify
the _concrete_list, not the pyobject!
l.append(42)

Fig. 9. Transitions could lead to multiple virtual ob-
jects for the same logical value.

4.7 Transitions of Mutable Objects
Both the Python fallback and the eager evaluation optimization require transitions between differ-
ent virtual objects representing the same logical object. The Python fallback requires converting
arbitrary virtual objects to opaque pyobject’s, and unmaterialized virtual objects are eventually
materialized. Figure 8 depicts those transitions systematically. While these transitions are unprob-
lematic for immutable virtual objects (e.g., integers), a naïve implementation leads to problems for
mutable objects as exemplified in Figure 9.

In our implementation, we avoid this problem by adding an extra layer of indirection by wrapping
all virtual objects into a Python object of type VirtualObjectHolder. When transitioning between
virtual object classes, we also update the reference of the holder object, so that all later usages will
use the updated value. Introducing this indirection is possible, since we have control over the code
through the transformation step discussed in subsection 4.1 and do not use bare Python objects to
perform type-based staging.

4.8 Post-Mortem Escape Analysis
One of the core contributions of our approach is the fine-grained fallback to Python object if some
functionality is not supported or Python functions are called.

However, converting mutable native data-structures to the Python equivalent can lead to incon-
sistencies if the Python object is modified and the native data-structure is still used later. Such
usages of outdated values can occur when mutable objects are nested inside other objects and one of
the objects is later converted to Python. One example where this can happen is with nested lists (e.g.,
list[list[int]]): if the outer object is converted to Python, later uses of the inner object would
use a potentially outdated value. If the inner object is converted to Python independently from the
outer object, usages of the outer object may still access the outdated inner value. The underlying
problem is that one mutable logical object has two unsynchronized physical representations.
An example for this situation is shown in Figure 10a. This problem of inconsistent state across

different representations of one logical problem is hard to detect during the translation process
without over-aggressive countermeasures. Especially as outdated values only occur rarely in
practice, proactively converting values to Python when, e.g., mutable values are inserted into a list,
is not desirable. However, when the problematic conversion occurs, it is impossible to determine
which other objects must be converted.

We propose a fix-point algorithm for this problem. First, we generate the IR optimistically and
track value uses, nesting of mutable objects, and conversions to Python. Afterwards, we analyze
the results (thus post-mortem) to identify problematic uses that could lead to inconsistent state. For
this, we use a Union-Find data structure. For every observed nest relation between two objects,
their sets are merged; for every conversion to Python, the object’s set is merged with the special

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

297:16 Michael Jungmair, Alexis Engelke, and Jana Giceva

def bar(l): # will be called using CPython
l[0][0] = 42

@cogen
def foo():
inner = [0]
outer = [inner] # assumed to be materialized
bar(outer) # outer converted to Python
print(outer) # will print [[42]]
print(inner) # would print [0], not [42]!

(a) Problematic Example: inner also escaped
to Python and thus needs to stored as Python
object from the beginning.

#
#
#
#
#
Nest(outer, inner)
Convert(outer)
already a pyobj
Use(inner)

(b) Trace of uses,
conversions, and
nestings.

{𝑖𝑛𝑣𝑎𝑙𝑖𝑑 }
{𝑖𝑛𝑣𝑎𝑙𝑖𝑑 }, {𝑖𝑛𝑛𝑒𝑟 }
{𝑖𝑛𝑣𝑎𝑙𝑖𝑑 }, {𝑖𝑛𝑛𝑒𝑟, 𝑜𝑢𝑡𝑒𝑟 }
{𝑖𝑛𝑣𝑎𝑙𝑖𝑑, 𝑖𝑛𝑛𝑒𝑟, 𝑜𝑢𝑡𝑒𝑟 }

𝐹𝑖𝑛𝑑 (𝑖𝑛𝑛𝑒𝑟) = 𝐹𝑖𝑛𝑑 (𝑖𝑛𝑣𝑎𝑙𝑖𝑑) ⇒ Problem!

(c) Analysis using union–find. inner
and invalid end up in the same set,
exposing the problem.

Fig. 10. Example for post-mortem escape analysis

node invalid. For every value use, we check whether the used object and invalid are in the same set
— if they are, the object should have been eagerly converted to Python. This information is stored
and the generation process is rerun with those decisions in mind to avoid the detected problems.
Since the resulting changes might lead to new inconsistencies, the process is repeated until a fixed
point is reached and no more observable inconsistencies are identified.

To make this approach work, virtual objects must be uniquely identifiable even across multiple
generation runs. When a virtual object is created, it computes a tuple of location identifiers that
correspond to a refined call-stack on expression granularity. This tuple is then checked against
the list of identifiers to be eagerly converted, and if required, the virtual object is immediately
converted to Python.

5 Supporting Popular Python Libraries
Our approach is highly modular and allows for partially supporting popular Python libraries with
function/method granularity. Unsupported modules, functions, and methods are transparently
handled by the fallback mechanisms without any involvement of users. This allows us to focus on
the most frequently used methods first and then expand coverage based on needs. In this section,
we discuss how we support selected libraries like Python’s built-in modules, numpy, pandas, and
scikit-learn. Table 4 gives an overview of the supported modules, classes and functions.

Table 4. Supported Python modules

builtins numpy pandas scikit-learn

bool, int, float, str, ndarray Series LinearRegression urllib: urlparse,
list, dict, tuple, int64 DataFrame LogisticRegression statistics: mean,
range, str, print, min float64 RangeIndex Pipeline stdev
max, sum, sorted ones, zeros, array Index KMeans scipy: special.erf

MultiIndex MinMaxScaler pickle: loads

5.1 Bootstrapping with the intrinsics Module
Previously, we showed the implementation of non-transformed methods as raw function (@pgen),
and while this approach is powerful and allows for full access to the internals, it is not trivial to
write such functions correctly, particularly for more complex logic. To simplify the bootstrapping
process, we developed an intrinsic module that implements commonly required functionality as
raw functions that can be called from @cogen functions.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

HiPy: Extracting High-Level Semantics from Python Code for Data Processing 297:17

1 @cogen_class
2 class str:
3 @cogen
4 def __getitem__(self, item):
5 if intrinsics.isa(item, int):
6 return intrinsics.call_builtin("string.at", str, [self, item])
7 elif intrinsics.isa(item, slice):
8 length = len(self)
9 start = item.start if item.start is not None else 0
10 stop = item.stop if item.stop is not None else length
11 start = start if start >= 0 else length + start
12 stop = stop if stop >= 0 else length + stop
13 if item.step is None:
14 return intrinsics.call_builtin("string.substr", str, [self, start, stop])
15 else:
16 return "".join([self[i] for i in range(start, stop, item.step)])
17 else:
18 intrinsics.not_implemented()

Fig. 11. Implementation of the __getitem__ method of str.

1 @cogen_class
2 class list:
3 @cogen
4 def sort(self):
5 # list._element_type is a type object representing the current type of the list elements
6 # for inconsistently typed lists, this type will be pyobject
7 compare_fn = intrinsics.bind(lambda l, r: l < r, [self._element_type, self._element_type])
8 intrinsics.call_builtin("list.sort", None, [self, compare_fn])

Fig. 12. Implementation of the sort method of list.

5.2 Python’s builtinsModule
In Python, the built-in builtins module contains core classes like int and core functions like
print. Using the intrinsics module, we were able to implement a large subset of the builtins
module without raw functions.

As an example, consider the method str.__getitem__, which implements the subscript operator,
whose implementation is shown in Figure 11. We implemented this using idiomatic Python code
combined with calls to functions of the intrinsics module. For strings there are two cases: an
integer argument is used to access a single character (e.g, "abc"[1]), or a slice is used to obtain a
substring (e.g, "abc"[1:-1]). For the first case, we generate a call to a builtin function to access the
respective character. For the second case, we first normalize the start and stop positions of the slice,
to correctly handle missing and negative values. If the slice contains no step value, then the slicing
operation just corresponds to a substring operation, for which we generate a builtin call. In the
case where a step value is given, we write idiomatic Python code to compose the final string. If the
argument is another type (e.g, pyobject), we raise a NotImplementedError at generation time.
As another example, that also shows more how high-level semantics is extracted, consider the

list.sort method, whose implementation is shown in Figure 12. We do not want to implement
the sorting procedure in Python, but instead emit a "list.sort" builtin call, that also receives a
callback function that can compare two list elements. In Line 5, this callback function is generated
from the simple lambda using the intrinsics.bindmethod, that materializes the lambda function
into an IR function and returns a function reference.
By injecting this builtins module into the global namespace of every transformed function

during the rewrite process, these functions will automatically use the virtual objects and functions.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

297:18 Michael Jungmair, Alexis Engelke, and Jana Giceva

1 # input: lambda row: row["b"] + str(row["a"])
2 func lambda_fn(r : record[a: int, b: str, __index__: int]) -> str {
3 a = record_get r[a]
4 b = record_get r[b]
5 str_a = int.to_string(a)
6 res = string.concatenate(b,str_a)
7 return res
8 }

Fig. 13. Generated lambda function, without the need to create a temporary Series object

5.3 numpy
For a basic support of the numpy library, we implemented virtual object classes for int64, float64,
and ndarray, as well array creation functions and selected numerical functions (e.g., np.sqrt).
For int64 and float64, common operators and conversions to and from Python’s native int and
float types are supported. The ndarray virtual object supports common vectorized operations (e.g.,
element-wise additions) as well as accessing elements by indices (e.g., arr[1,2]), slicing to create
partial views on the array (e.g., arr[1:-1, 2]), and reshaping. The virtual objects already perform
a lot of heavy lifting such that only few different IR operations are generated. For element-wise
operations only calls to two builtin functions are generated: array.apply and array.binary_op.

5.4 Pandas
Pandas is a rather complex library, but we make sure that the parts supported by HiPy are se-
mantically equivalent, unlike several other existing implementations. In addition to the two main
classes, DataFrame and Series, we also implemented different kinds of indices required for full
compatibility. The entire supported functionality is mapped to simple IR operations operating on
table and column types.
While Pandas is typically faster than writing raw Python code, it is still not tailored towards

high performance, often due to hiding the effective semantics behind many (costly) abstractions. As
an example, consider the DataFrame.apply method that allows for applying a function row-wise:
df.apply(lambda row: row["b"]+str(row["a"]), axis=1). For each row, Pandas creates a
new Series object with the column labels forming the index and the values the series’ data. However,
in many cases, the supplied function will only access the values for the different columns using the
subscript operator (e.g., row["a"]). In our virtual implementation, we can avoid creating Series
objects at run-time, which is especially beneficial, because this object is typically inconsistently
typed. Creating an unmaterialized Series objects with unmaterialized Index objects allows the
lookup to happen at generation time. Still, if any other method is used, we can still materialize the
series, allowing for full compatibility. Figure 13 shows the IR function generated as callback for a
table.apply_row_wise builtin function, demonstrating how our approach can tear down (costly)
abstractions to reveal the real semantics.

5.5 ML Inference with scikit-learn and pickle

It has become quite common in data processing pipelines to performmodel inference on tabular data
(e.g., for fraud detection), often using simple models like linear or logistic regression. Typically, these
models are pre-trained and stored as a binary using Python’s picklemodule, and then unpickled for
inference. We support this use case by implementing pickle.loads, which performs the unpickling
at generation time if the binary string is already known. It then tries to lookup the corresponding
virtual class and calls a special static method (e.g. LinearRegression.__loadfrom__) that creates
a virtual object from a live Python object. For linear and logistic regression, k-Means, MinMaxScaler,
and scikit-learn pipelines, we implemented this static method by creating (unmaterialized) virtual

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

HiPy: Extracting High-Level Semantics from Python Code for Data Processing 297:19

fn = extractBd
'b' = 'bedrooms'
'f' = 'facts and features'
df['b']= df['f'].apply(fn)
df=df[df['b'] < 10]

(a) Simplified first two lines
of Zillow benchmark.

%colf = table.get_column %table, "f"
%colb = column.apply %colb, %fn
%table2 = table.set_column %table, %colb, "b"
%colb2 = table.get_column %table2, "b"
%cond = column.apply %colb2, %fn_lt_10
%r = table.filter_by_col %table2, %cond

(b) Generated column-centric IR operations

%table2 = table.map %table, %fn

{"in": "f" => "out": "b"}↩→
%res = table.filter %table2,

%fn_lt_10 {"in": "b"}↩→

(c) Table-centric IR operations af-
ter optimization

Fig. 14. Rewriting column-centric operations to table-centric operations

objects for each attribute, and create a virtual model object using these values. Additionally, we
implemented support for both predict methods that compute the predicted values using numpy and
the relevant attributes (e.g., coeffs_ and intercept_). Thus, users can use existing, pre-trained
models without any change, while our approach allows to extract the high-level semantics (i.e,
float additions and multiplications). All other methods are of course still supported through the
Python fallback.

6 End-to-End Optimization and Compilation
To evaluate the effectiveness of our approach, we also built an end-to-end prototype that performs
different high-level optimizations and generates efficient C++ code.

6.1 Optimization Passes
The generated, high-level IR allows for many optimizations that can both simplify the extrac-
tion process of logical operators, but also improve performance. In this section, we discuss the
implemented optimization passes.

General Optimizations. We implemented a set of standard optimization passes on the IR like
dead code elimination, which mostly serve the purpose of supporting other optimizations and
cleaning up the IR. Many complex, domain-specific optimizations fuse loop-like operations, which
leads to unnecessary function calls in fused call-back functions. Applying function inlining and
canonicalization patterns to, e.g., eliminate pack/unpack operations for records simplifies the IR
and also improves performance.

Fusing Array Operations. Currently, we implement one central optimization for numerical work-
loads: fusing of declarative array operations. This is done in two steps: First, high-level array
operations such as array.binary_op and array.unary_op are transformed pattern-based into
array.compute operations that take a variadic number of arrays and a scalar function that com-
putes the new array from the scalar values. Chained array.compute operations can then be easily
fused into one array.compute operation, by combining the scalar callback functions.

Optimizations for Tabular Data Processing. We also perform different optimizations for tabular
data processing, for example to efficiently execute Pandas workloads. In the first step, different
rewrite patterns are applied to rewrite the IR for common patterns. This is crucial for converting
column-centric operations commonly performed by pandas into table-centric operations that
correspond to relational operators in existing systems.
Figure 14 shows this rewrite step for the first two lines of the Zillow benchmark that we will

use in the evaluation. In the generated IR, columns are fetched from the table first, followed by
computations, which generate new columns. These are then used to either create a modified table or
filter a table. With pattern-based rewrites, we can turn these IR operations into a simple table.map
and table.filter operations

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

297:20 Michael Jungmair, Alexis Engelke, and Jana Giceva

As a second step, the supported operations can be extracted to form a tree of relational operators.
This can be further optimized using traditional query optimization techniques, for example, by
pushing down filters or joins. While one would typically delegate these optimizations to the
surrounding data processing system, we also implemented them in our standalone prototype.
To further demonstrate the impact of extracting the high-level semantics, we fuse pipelines of
table-centric operators to generate efficient, data-centric code as proposed by Neumann [23].

6.2 C++ Back-End and Runtime Library
For the prototype, we generate standalone C++ programs from the IR using simple string patterns.
In addition to generating C++ code for the IR operations, we also generate C++ code for setting up
the embedded Python interpreter (i.e., importing Python modules, defining local Python functions).
However, the approach is not limited to such a back-end, as one could also generate a more complex
and powerful IR, like MLIR [19], which would allow further and more advanced optimizations.

Runtime Library. To avoid complex generation logic, the standalone library is linked with a
small runtime library. For primitive types like strings, integers, floats, boolean values, lists, and
dictionaries, we just use the corresponding types of the C++ standard library. In addition, we
implement functions that are not already implemented in the standard library such as special string
functions. For embedding the Python interpreter and implementing operations on Python objects,
we use the pybind11 library. To represent numpy’s n-dimensional arrays and zero-cost views,
we implement a custom C++ class that contains a pointer to the original data and implements
logic to deal with dimensions and strides. For tabular data, we use Apache Arrow’s columnar
in-memory format, which allows for a zero-copy, efficient integration with data processing systems.
Additionally, Apache Arrow already implements logic for the conversion pandas.

7 Evaluation
In this section, we evaluate the proposed design as well as the implemented prototype by performing
end-to-end experiments. We show that HiPy can handle complex Python code, allows for effective
logical optimizations, and offers high performance. Furthermore, we also show that the fallback
mechanism allows us to run complex programs even if some parts are not fully supported, without
a notable performance penalty. These benefits can be observed not only for the original target of
data-science and engineering workloads using pandas, but also for typical scalar UDFs, numerical
workloads and general Python benchmarks.

All experiments were performed on a machine running Ubuntu 24.04 (Linux 6.8.0-36) with an
Intel Xeon Gold 6430 CPU (3.4 GHz) and 256GiB memory. We focus on single-threaded execution,
as auto-parallelization and auto-distribution are orthogonal, domain-specific problems. All shown
performance numbers only include the execution times for the evaluated approaches where this is
easily separable; for PyPy, results include tracing and compilation overhead. HiPy-generated C++
code is compiled with GCC 11. Furthermore, every experiment was run once for warmup and then
repeated three times for measurement. We report the median for these three runs and the standard
deviation was generally below 5%.

7.1 Data-Science and -Engineering Workloads
The main focus of our work lies on supporting data-science and data-engineering workloads written
in Python using a framework like Pandas. To show the impact of our approach, we selected 4
different benchmarks. The first 2 are taken from Tuplex’s [38] benchmarking suite: Logs parses
webserver logs and joins the result with a list of malicious IP addresses; Zillow extracts and filters
data from a string-based real estate data set using Python functions. The other benchmarks are 2 of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

HiPy: Extracting High-Level Semantics from Python Code for Data Processing 297:21

0

5

10

↯ 0

5

10

15

↯ ↯ 0.0

0.5

1.0

1.5

↯ ↯ 0.0

0.5

1.0

1.5

↯ ↯

⚠: HiPy requires Fallback mechanismSp
ee

du
p

ov
er

 C
Py

th
on Zillow ⚠️ Logs ⚠️ UC1 UC10

Competitor
CPython/pandas
Modin
Tuplex
Numba/pandas
Cython/pandas
HiPy
HiPy (Opt.)

Fig. 15. Performance for data-science and data-engineering workloads.

10 use cases from the TPCx-AI benchmark [6] that are bottlenecked by preprocessing tabular data
and not by machine-learning inference or sampling audio files: UC1 joins and aggregates data and
performs inference with a pre-trained k-means model; UC10 first joins two tables, parses strings
into timestamps and normalizes features, before applying a pre-trained logistic regression model
for inference.

We compare the performance of our approach with and without optimizations to CPython 3.12.2
using pandas 2.2.0, Tuplex 0.3.6, and Modin [28] 0.28.0. For pandas, we also include experiments
where pandas is accelerated with Numba [18] or Cython (version 3.0.9). However, Numba was
only able to accelerate a single experiment, UC1. Unfortunately, Tuplex could not run the Logs
experiment due to a segmentation fault and also does not implement the required pandas API for
UC1 and UC10. We also looked into SDQL’s pandas front-end [34], Weld’s pandas front-end [27],
and Grizzly [13], but they all lacked the functionality to execute any of the benchmarks: for Logs
and Zillow, this is due to tracing-based approaches being unable to handle arbitrary Python code;
for UC1 and UC10, they do not support the complex operations and ML inference.
Figure 15 shows the measured speedups over CPython where we can observe that HiPy (Opt)

is significantly faster than the Pandas implementation, even when combined with Numba and
Cython, which do not significantly speed up these workloads. This speedup is realized despite
materializing the result first into Apache Arrow’s columnar format, which is expensive to build
compared to building a pandas DataFrame, and despite HiPy using the fallback mechanism for
Zillow and Logs to support Python’s regex module and string formatting, as this is not yet imple-
mented. This is also why Tuplex is two times faster than HiPy: they fully implemented exactly
the functionality required for this benchmark. Furthermore, we can observe that Zillow already
profits a lot from generating efficient C++ code, as shown by the 3.2x performance increase of HiPy
without optimizations, because it heavily uses Python code for string processing. We also observe
an additional 2x improvement in performance from the various optimizations discussed in section 6.
Logs substantially benefits from rewriting the IR to perform table-centric operations, which in turn
allows for pushing a selective join down, yielding a speedup of 18x for HiPy (Opt). For UC1, and
UC10, we can observe that, without optimizations, HiPy is even slower than pandas, due to the
high materialization cost of using Apache Arrow. However, the pattern-based optimizations and
the fusing of operations still lead to a speedup of 1.8x for HiPy (Opt).
Modin does not optimize the pandas operations itself and primarily focuses on the orthogonal

problem of parallelization and distribution, which leads to a poor single-threaded performance. It
also does not inline the model inference for UC10, and the execution on UC1 fails with an exception.

7.2 Scalar UDFs
User-defined Python code is often used in data-processing systems as scalar user-defined functions,
that are invoked for every scalar value. Extracting the high-level semantics may allow for logical
optimizations and estimating the UDF’s cost, but can also avoid significant calling overhead by

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

297:22 Michael Jungmair, Alexis Engelke, and Jana Giceva

0

1

2

3

4

0.0

0.5

1.0

1.5

2.0

0

500

1000

1500

2000

0

2

4

6

Sp
ee

du
p

ov
er

 C
Py

th
on

parse_url levensthein lm check_iban

Competitor
CPython
HiPy
HiPy (Opt.)

Fig. 16. End-to-end performance for a table scan written in C++, calling scalar UDFs.

0.0

0.5

1.0

1.5

↯ 0.0

0.5

1.0

1.5

0

1

2

3

4

↯ 0

200

400

↯

Sp
ee

du
p

ov
er

 C
Py

th
on

BlackScholes Haversine laplace centdiff
Competitor

CPython/numpy
Weld
Numba
HiPy
HiPy (Opt.)

Fig. 17. Performance for numerical workloads (excluding compilation times).

generating native code. We evaluate HiPy’s performance by measuring the end-to-end performance
for a table scan written in C++, calling different scalar UDFs, either by using HiPy to generate
native code or by embedding CPython. Due to this methodology, it is hard to compare with other
implementations. We selected four different UDFs: IBAN number validation, Levenshtein string
distance, URL parsing, and inference on a scikit-learn linear regression model (lm).
Figure 16 shows the measured speedups over CPython. We can observe that, even without

optimizations, HiPy is always faster than the Python baseline, due to generating efficient code and
by avoiding materialization and conversion overheads. Levenshtein further benefits from inlining,
but as our implemented optimizations primarily target array and tabular data processing, they have
low impact on the other UDFs. The lm benchmark shows the strength of our general approach as it
manages to reduce inference for a linear regression model down to a few floating-point operations
that can be inlined in C++, resulting in a speedup of 2200x.

7.3 Numerical Workloads
While not the primary focus of our approach, we also evaluate HiPy’s performance on numer-
ical workloads. They are supported due to the generality of our approach. For the evaluation,
we performed four numerical benchmarks with different emphasizes. The first two benchmarks
(Blackscholes and Haversine) were taken from Weld’s [27] benchmarking suite and are mostly
using numpy’s vectorized array operations. The other two benchmarks were taken from Numba’s
benchmarking suite: laplace implements an iterative algorithm, performing vectorized operations
on smaller array slices; centdiff only uses numpy arrays for efficient storage and performs the
computation in Python. We compare the performance of HiPy against the baseline of using CPython
3.12.2 with numpy 1.26.4, Numba [18], and Weld 0.0.6. However, due to relying on the tracing
approach, Weld cannot run the laplace and centdiff benchmarks. Numba could not run Blackscholes
due lack of support for a function from scipy.special.
Figure 17 shows the measured, single-threaded speedups over CPython for the different im-

plementations. For vectorized operations in the first two benchmarks, Numpy is already heavily
optimized and difficult to outperform. HiPy with optimizations is just barely faster, Numba is

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

HiPy: Extracting High-Level Semantics from Python Code for Data Processing 297:23

0

10

20

0

5

10

0.0

0.5

1.0

1.5

2.0

0

2

4

6

0.00

0.25

0.50

0.75

1.00

↯

⚠: HiPy requires Fallback mechanismSp
ee

du
p

ov
er

 C
Py

th
on Schulze Fannkuch TAQ Mandelbrot ⚠️ Telco ⚠️

Competitor
CPython
PyPy
Cython
GraalPy
Codon
HiPy
HiPy (Opt.)

Fig. 18. Performance for general Python benchmarks. Note that mandelbrot and telco are supported by
fined-grained fallback to Python.

slower than the baseline, and Weld is faster by 1.8x only for the Haversine benchmark, probably
due to vectorized execution. For the other two benchmarks, both Numba and HiPy yield substantial
performance improvements, as a significant part of it consists of raw Python statements operating
on the numpy array. For laplace, the high-level fusing optimization makes HiPy more than 4x
faster than Python, whereas Numba is just slightly faster. For centdiff, HiPy does not benefit from
logical optimizations, but it is still ∼110x faster than Python, due to generating efficient C++ code.
Nonetheless Numba achieves a much higher speedup of 530x, as it performs more optimizations
for numerical workloads.

7.4 General Python Programs
To show the generality of our approach, we also evaluate HiPy on five benchmarks used to evaluate
general Python implementations. Mandelbrot, Fannkuch, and TAQ are taken from Codon’s [35]
benchmarking suite, schulze is taken from PyPy’s benchmarking suite2 and slightly adapted to work
for Python3, and Telco is from the PyPerformance suite3. These benchmarks were selected since
they are complex enough to test real behavior (e.g., no fibonacci computation or word count), but
also do not stress-test Python’s object-oriented features, as this would lead to HiPy to completely
fallback to Python with no additional insights. HiPy relies on the automatic fallback mechanisms
for Mandelbrot and Telco due to a lack of an implementation for complex and decimal numbers,
which are heavily used in these benchmarks. We compare HiPy against CPython 3.12.2, Cython
3.0.9, PyPy 3.10, GraalPy 24.0, and Codon 0.16.3.

Figure 18 shows the measured speedups over CPython for all benchmarks and implementations.
For the three fully supported benchmarks, we can observe that HiPy achieves substantial improve-
ments of 1.7x (taq), 13x (fannkuch), and 27x (schulze) compared to CPython, even outperforming
Codon, Cython, and PyPy. The key reasons for HiPy’s performance are optimizations like inlining
and simplification as well as generating C++ code. For the two other benchmarks, we can observe
neither significant slowdowns nor speedups compared to CPython, while the performance of
Codon, Cython, and PyPy varies. Performance of GraalPy varies strongly, between an 2x speedup
and a 26x slowdown.

Performance of Frequent Fallbacks. While fallbacks allow us to support full Python semantics,
they also come at some cost. In particular, frequent conversions of objects can cause performance
regressions, even though every object is converted at most once. To evaluate this situation, Figure 18
includes two benchmarks where the main logic requires heavy fallback due to not-yet supported
types: Mandelbrot uses complex number support and Telco heavily uses of decimal numbers, both

2https://foss.heptapod.net/pypy/benchmarks/-/blob/branch/default/own/schulze.py?ref_type=heads
3https://github.com/python/pyperformance/tree/main/pyperformance/data-files/benchmarks/bm_telco

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

https://foss.heptapod.net/pypy/benchmarks/-/blob/branch/default/own/schulze.py?ref_type=heads
https://github.com/python/pyperformance/tree/main/pyperformance/data-files/benchmarks/bm_telco

297:24 Michael Jungmair, Alexis Engelke, and Jana Giceva

are currently not implemented. Despite the main logic heavily using the fallback mechanism, the
performance does not substantially regress.

8 Discussion
Explored Alternatives. Preceding the proposed approach, we initially experimented with AST-

based translation and translating Python bytecode. For the AST-based approach, however, we
needed to re-implement Python’s semantics at many points, which we now avoid by generating
Python code. Furthermore, the resulting translator was monolithic, constraining maintainability
and debuggability. Extracting semantics from Python bytecode proved to be difficult for more
complex programs and it would have required complex lifting logic to reconstruct the program
semantics at a higher level.

Limitations. In principle, our approach could fail due to three reasons. First, users could use
(currently) unsupported Python features like coroutines, class definitions, type alias, with, pattern
matching, generators, scoping keywords, string templates, and decorators. Second, our implemen-
tation is vulnerable to specific code patterns that would lead to an exponential generation time.
Finally, if the main assumption of our approach that the used methods/classes are not modified at
runtime (i.e., monkey patching) is invalid, the generated IR would not be semantically equivalent.
The first two cases can be handled generically by falling back to Python when unsupported features
are encountered or bad behavior is detected (e.g., by introducing a counter for the number of
iterations). The last case cannot be handled by our approach, but Python code written for data
processing usually does not involve monkey patching.

User Experience. Because we follow Python’s semantics, end-users can use the existing Python
interpreter and standard Python debugging tools for prototyping and debugging. Dealing with the
generated C++ code is only necessary if bugs in HiPy are encountered. In these cases, HiPy offers a
comparable experience to established frameworks like Numba, which generates LLVM IR.

Developer Experience. By implementing everything in plain Python, our approach is easy to
distribute and extend. Library replacements are also written in idiomatic Python, so even library
authors without experience in compiler technology can contribute. One can also debug the IR
generation by just using the standard Python debugger, since we maintain the code locations during
the transformation process. In contrast to approaches like Codon, which is written in C++, we
deliberately prioritize developer experience over slightly longer generation and compilation times.

Performance Profile. For workloads not evaluated in this paper, performance can vary but should
not be significantly slower than CPython.When no fallbacks are required, speedups can be expected,
especially if logical optimizations are applicable, but no substantial regressions. For whole-function
fallback, performance does not change, as the function will be executed by CPython. Thus, only
the case of frequent fallbacks could cause substantial regressions. Our evaluation in subsection 7.4
included two such cases, showing that performance with fallbacks is typically comparable to
CPython.

Security. Depending on the use-case, naïvely embedding python code into data processing
systems can have security implications, especially if those systems are used organization-wide.
Sandboxing Python is hard, because arbitrary C code can be loaded as extensions and interpreter
internals (e.g., gc, sys) are exposed. Thus, Python is usually either trusted, or sandboxed using
containers or virtual machines. With our approach, more trade-offs between compatibility and
security are possible. For fully secure but still performant execution, one could disable the automatic
fallback and ensure that only permissible operations are generated. Although significantly reducing

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

HiPy: Extracting High-Level Semantics from Python Code for Data Processing 297:25

compatibility, many workloads can be supported without fallback, as illustrated previously. For
more compatibility, a combination of only allowing trusted python libraries (e.g. numpy, pandas)
and using Python’s builtin audit mechanism is possible.

Further Optimizations. While our current set of optimizations is targeted at data science work-
loads, our approach is not limited to this domain and it is possible to add further transformations
for improving, e.g., numerical workloads. Further, replacing our prototypical C++ back-end with a
compiler infrastructure like MLIR [19] gives direct access to a wide range of existing optimizations
from various domains.

9 Conclusion
This paper proposes a novel approach for extracting the high-level semantics from Python code
by generating a program generator from it and executing it to generate a high-level, statically-
typed IR. We successfully demonstrated with our end-to-end prototype HiPy that this IR can be
leveraged to perform domain-specific, logical optimizations and generate efficient C++ code. For
data-science workloads, we achieve significant single-threaded speedups, while HiPy is also capable
of accelerating Python code in other domains. We hope that our focus on reaching full compatibility
through the proposed fallback mechanism makes HiPy usable not only for further research like
lifting declarative (sub-)operators from imperative IR operations, but also in practice.

Data-Availability Statement
Our implementation, HiPy, as well as the benchmarks and raw data from our evaluation (section 7)
are available on Zenodo [16].

References
[1] [n. d.]. TorchScript. https://pytorch.org/docs/stable/jit.html. Accessed: 2024-03-27.
[2] Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib Kamil. 2019. Automatically translating

image processing libraries to Halide. ACM Trans. Graph. 38, 6 (2019), 204:1–204:13. https://doi.org/10.1145/3355089.
3356549

[3] Joël Akeret, Lukas Gamper, Adam Amara, and Alexandre Réfrégier. 2015. HOPE: A Python just-in-time compiler for
astrophysical computations. Astron. Comput. 10 (2015), 1–8. https://doi.org/10.1016/J.ASCOM.2014.12.001

[4] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcín, Dag Sverre Seljebotn, and Kurt Smith. 2011. Cython:
The Best of Both Worlds. Comput. Sci. Eng. 13, 2 (2011), 31–39. https://doi.org/10.1109/MCSE.2010.118

[5] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2017. Julia: A Fresh Approach to Numerical
Computing. SIAM Rev. 59, 1 (2017), 65–98. https://doi.org/10.1137/141000671

[6] Christoph Brücke, Philipp Härtling, Rodrigo Escobar Palacios, Hamesh Patel, and Tilmann Rabl. 2023. TPCx-AI - An
Industry Standard Benchmark for Artificial Intelligence and Machine Learning Systems. Proc. VLDB Endow. 16, 12
(2023), 3649–3661. https://doi.org/10.14778/3611540.3611554

[7] Hassan Chafi, Zach DeVito, Adriaan Moors, Tiark Rompf, Arvind K. Sujeeth, Pat Hanrahan, Martin Odersky, and Kunle
Olukotun. 2010. Language virtualization for heterogeneous parallel computing. In Proceedings of the 25th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 2010). 835–847.
https://doi.org/10.1145/1869459.1869527

[8] João P. L. de Carvalho, Braedy Kuzma, Ivan Korostelev, José Nelson Amaral, Christopher Barton, José E. Moreira, and
Guido Araujo. 2021. KernelFaRer: Replacing Native-Code Idioms with High-Performance Library Calls. ACM Trans.
Archit. Code Optim. 18, 3 (2021), 38:1–38:22. https://doi.org/10.1145/3459010

[9] James M. Decker, Dan Moldovan, Andrew A. Johnson, Guannan Wei, Vritant Bhardwaj, Gregory Essertel, Fei Wang,
Alexander B. Wiltschko, and Tiark Rompf. 2019. Snek: Overloading Python Semantics via Virtualization.

[10] Yannis E. Foufoulas, Alkis Simitsis, Eleftherios Stamatogiannakis, and Yannis E. Ioannidis. 2022. YeSQL: "You extend
SQL" with Rich and Highly Performant User-Defined Functions in Relational Databases. Proc. VLDB Endow. 15, 10
(2022), 2270–2283. https://doi.org/10.14778/3547305.3547328

[11] Yoshihiko Futamura. 1971. Partial evaluation of computation process-an approach to a compilercompiler. Systems,
computers, controls 2, 5 (1971), 45–50.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

https://pytorch.org/docs/stable/jit.html
https://doi.org/10.1145/3355089.3356549
https://doi.org/10.1145/3355089.3356549
https://doi.org/10.1016/J.ASCOM.2014.12.001
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1137/141000671
https://doi.org/10.14778/3611540.3611554
https://doi.org/10.1145/1869459.1869527
https://doi.org/10.1145/3459010
https://doi.org/10.14778/3547305.3547328

297:26 Michael Jungmair, Alexis Engelke, and Jana Giceva

[12] Philipp Marian Grulich, Steffen Zeuch, and Volker Markl. 2021. Babelfish: Efficient Execution of Polyglot Queries.
Proc. VLDB Endow. 15, 2 (2021), 196–210. https://doi.org/10.14778/3489496.3489501

[13] Stefan Hagedorn, Steffen Kläbe, and Kai-Uwe Sattler. 2021. Putting Pandas in a Box. In 11th Conference on Innovative
Data Systems Research, CIDR 2021, Virtual Event, January 11-15, 2021, Online Proceedings. www.cidrdb.org. http:
//cidrdb.org/cidr2021/papers/cidr2021_paper07.pdf

[14] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial evaluation and automatic program generation. Prentice
Hall.

[15] Ulrik Jørring and William L. Scherlis. 1986. Compilers and Staging Transformations. In Conference Record of the
Thirteenth Annual ACM Symposium on Principles of Programming Languages, St. Petersburg Beach, Florida, USA, January
1986. ACM Press, 86–96. https://doi.org/10.1145/512644.512652

[16] Michael Jungmair, Alexis Engelke, and Jana Giceva. 2024. Artifact for "HiPy: Extracting High-Level Semantics From
Python Code For Data Processing". https://doi.org/10.5281/zenodo.13323059

[17] Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-Lezama. 2016. Verified lifting of stencil computations.
In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’16).
711–726. https://doi.org/10.1145/2908080.2908117

[18] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: a LLVM-based Python JIT compiler. In Proceedings
of the Second Workshop on the LLVM Compiler Infrastructure in HPC. ACM, 7:1–7:6. https://doi.org/10.1145/2833157.
2833162

[19] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques A. Pienaar, River Riddle, Tatiana
Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain
Specific Computation. In IEEE/ACM International Symposium on Code Generation and Optimization (CGO 2021). 2–14.
https://doi.org/10.1109/CGO51591.2021.9370308

[20] Wes McKinney. 2010. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science
Conference (SciPy 2010). scipy.org, 56–61. https://doi.org/10.25080/MAJORA-92BF1922-00A

[21] Modular Inc. 2024. Mojo. https://www.modular.com/mojo. Accessed: 2024-08-29.
[22] Dan Moldovan, James M. Decker, Fei Wang, Andrew A. Johnson, Brian K. Lee, Zachary Nado, D. Sculley, Tiark

Rompf, and Alexander B. Wiltschko. 2019. AutoGraph: Imperative-style Coding with Graph-based Performance. In
Proceedings of Machine Learning and Systems 2019, MLSys 2019, Stanford, CA, USA, March 31 - April 2, 2019. mlsys.org.
https://proceedings.mlsys.org/book/272.pdf

[23] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern Hardware. Proc. VLDB Endow. 4, 9
(2011), 539–550. https://doi.org/10.14778/2002938.2002940

[24] Ansong Ni, Daniel Ramos, Aidan Z. H. Yang, Inês Lynce, VascoM.Manquinho, RubenMartins, and Claire Le Goues. 2021.
SOAR: A Synthesis Approach for Data Science API Refactoring. In 43rd IEEE/ACM International Conference on Software
Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 112–124. https://doi.org/10.1109/ICSE43902.2021.00023

[25] Nuitka Team. 2023. Nuitka: A Python compiler written in Python. https://github.com/Nuitka/Nuitka.
[26] Oracle Labs. 2023. GraalPython: A Python 3 Implementation Built on GraalVM. https://www.graalvm.org/python/.

Accessed: 2024-03-27.
[27] Shoumik Palkar, James Thomas, Anil Shanbhag, Malte Schwarzkopf, Saman P. Amarasinghe, and Matei Zaharia.

2017. Weld: A Common Runtime for High Performance Data Analysis. In 8th Biennial Conference on Innovative
Data Systems Research, CIDR 2017, Chaminade, CA, USA, January 8-11, 2017, Online Proceedings. www.cidrdb.org.
http://cidrdb.org/cidr2017/papers/p127-palkar-cidr17.pdf

[28] Devin Petersohn, Dixin Tang, Rehan Sohail Durrani, Areg Melik-Adamyan, Joseph Gonzalez, Anthony D. Joseph, and
Aditya G. Parameswaran. 2021. Flexible Rule-Based Decomposition and Metadata Independence in Modin: A Parallel
Dataframe System. Proc. VLDB Endow. 15, 3 (2021), 739–751. https://doi.org/10.14778/3494124.3494152

[29] Pyston Team. 2023. Pyston: A faster and highly-compatible implementation of the Python programming language.
https://github.com/pyston/pyston.

[30] Mark Raasveldt and Hannes Mühleisen. 2016. Vectorized UDFs in Column-Stores. In Proceedings of the 28th International
Conference on Scientific and Statistical Database Management (SSDBM ’16). Article 16. https://doi.org/10.1145/2949689.
2949703

[31] James K. Reed, Zachary DeVito, Horace He, Ansley Ussery, and Jason Ansel. 2022. torch.fx: Practical Program Capture
and Transformation for Deep Learning in Python. In Proceedings of Machine Learning and Systems. mlsys.org, 638–651.
https://proceedings.mlsys.org/paper/2022/hash/ca46c1b9512a7a8315fa3c5a946e8265-Abstract.html

[32] Armin Rigo and Samuele Pedroni. 2006. PyPy’s approach to virtual machine construction. In Companion to the 21th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA
’06). 944–953. https://doi.org/10.1145/1176617.1176753

[33] Tiark Rompf andMartin Odersky. 2012. Lightweight modular staging: a pragmatic approach to runtime code generation
and compiled DSLs. Commun. ACM 55, 6 (2012), 121–130. https://doi.org/10.1145/2184319.2184345

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

https://doi.org/10.14778/3489496.3489501
http://cidrdb.org/cidr2021/papers/cidr2021_paper07.pdf
http://cidrdb.org/cidr2021/papers/cidr2021_paper07.pdf
https://doi.org/10.1145/512644.512652
https://doi.org/10.5281/zenodo.13323059
https://doi.org/10.1145/2908080.2908117
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.25080/MAJORA-92BF1922-00A
https://www.modular.com/mojo
https://proceedings.mlsys.org/book/272.pdf
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.1109/ICSE43902.2021.00023
https://github.com/Nuitka/Nuitka
https://www.graalvm.org/python/
http://cidrdb.org/cidr2017/papers/p127-palkar-cidr17.pdf
https://doi.org/10.14778/3494124.3494152
https://github.com/pyston/pyston
https://doi.org/10.1145/2949689.2949703
https://doi.org/10.1145/2949689.2949703
https://proceedings.mlsys.org/paper/2022/hash/ca46c1b9512a7a8315fa3c5a946e8265-Abstract.html
https://doi.org/10.1145/1176617.1176753
https://doi.org/10.1145/2184319.2184345

HiPy: Extracting High-Level Semantics from Python Code for Data Processing 297:27

[34] Hesam Shahrokhi, Callum Groeger, Yizhuo Yang, and Amir Shaikhha. 2023. Efficient Query Processing in Python
Using Compilation. In Companion of the 2023 International Conference on Management of Data. ACM, 199–202. https:
//doi.org/10.1145/3555041.3589735

[35] Ariya Shajii, Gabriel Ramirez, Haris Smajlovic, Jessica Ray, Bonnie Berger, Saman P. Amarasinghe, and Ibrahim
Numanagic. 2023. Codon: A Compiler for High-Performance Pythonic Applications and DSLs. In Proceedings of the
32nd ACM SIGPLAN International Conference on Compiler Construction (CC 2023). ACM, 191–202. https://doi.org/10.
1145/3578360.3580275

[36] Phanwadee Sinthong andMichael J. Carey. 2019. AFrame: Extending DataFrames for Large-Scale Modern Data Analysis.
In 2019 IEEE International Conference on Big Data (IEEE BigData). 359–371. https://doi.org/10.1109/BIGDATA47090.
2019.9006303

[37] Phanwadee Sinthong and Michael J. Carey. 2021. PolyFrame: A Retargetable Query-based Approach to Scaling
Dataframes. Proc. VLDB Endow. 14, 11 (2021), 2296–2304. https://doi.org/10.14778/3476249.3476281

[38] Leonhard F. Spiegelberg, Rahul Yesantharao, Malte Schwarzkopf, and Tim Kraska. 2021. Tuplex: Data Science in
Python at Native Code Speed. In SIGMOD ’21: International Conference on Management of Data. ACM, 1718–1731.
https://doi.org/10.1145/3448016.3457244

[39] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, Ion Stoica, et al. 2010. Spark: Cluster computing
with working sets. HotCloud 10, 10-10 (2010), 95.

Received 2024-04-01; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 297. Publication date: October 2024.

https://doi.org/10.1145/3555041.3589735
https://doi.org/10.1145/3555041.3589735
https://doi.org/10.1145/3578360.3580275
https://doi.org/10.1145/3578360.3580275
https://doi.org/10.1109/BIGDATA47090.2019.9006303
https://doi.org/10.1109/BIGDATA47090.2019.9006303
https://doi.org/10.14778/3476249.3476281
https://doi.org/10.1145/3448016.3457244

	Abstract
	1 Introduction
	2 Related Work
	2.1 Alternative Python Implementations
	2.2 Specialized Python Compilers
	2.3 Supporting Embedded DSLs

	3 Core Methodology
	3.1 Adapting the First Futamura Projection
	3.2 SSA-Based Target IR

	4 Implementation
	4.1 Transforming Python Functions to Program Generators
	4.2 Virtual Objects and Types
	4.3 Fine-Grained Fallback to Python
	4.4 Eager Execution and Lazy IR Generation
	4.5 Implementing Lambda Functions
	4.6 State Modifications During IR Generation and Type Inference
	4.7 Transitions of Mutable Objects
	4.8 Post-Mortem Escape Analysis

	5 Supporting Popular Python Libraries
	5.1 Bootstrapping with the intrinsics Module
	5.2 Python's builtins Module
	5.3 numpy
	5.4 Pandas
	5.5 ML Inference with scikit-learn and pickle

	6 End-to-End Optimization and Compilation
	6.1 Optimization Passes
	6.2 C++ Back-End and Runtime Library

	7 Evaluation
	7.1 Data-Science and -Engineering Workloads
	7.2 Scalar UDFs
	7.3 Numerical Workloads
	7.4 General Python Programs

	8 Discussion
	9 Conclusion
	References

