HyPerlnsight: Data Exploration Deep Inside HyPer

Nina Hubig"
hubig@in.tum.de

Dimitri Vorona
vorona@in.tum.de

Linnea Passing
passing@in.tum.de

Alfons Kemper

kemper@in.tum.de

Maximilian E. Schiile
schuele@in.tum.de

Thomas Neumann
neumann@in.tum.de

Technical University of Munich

ABSTRACT

Nowadays we are drowning in data of various varieties. For all
these mixed types and categories of data there exist even more
different analysis approaches, often done in single hand-written
solutions. We propose to extend HyPer, a main memory database
system to a uniform data agent platform following the “one system
fits all” approach for solving a wide variety of data analysis prob-
lems. We achieve this by applying a flexible operator concept to
a set of various important data exploration algorithms. With that,
HyPer solves analytical questions using clustering, classification,
association rule mining and graph mining besides standard HTAP
(Hybrid Transaction and Analytical Processing) workloads on the
same database state. It enables to approach the full variety and
volume of HTAP extended for data exploration (HTAPx), and only
needs knowledge of already introduced SQL extensions that are au-
tomatically optimized by the database’s standard optimizer. In this
demo we will focus on the benefits and flexibility we create by using
the SQL extensions for several well-known mining workloads. In
our interactive webinterface for this project named HyPerInsight we
demonstrate how HyPer outperforms the best open source competi-
tor Apache Spark in common use cases in social media, geo-data,
recommender systems and several other.

CCS CONCEPTS

» Information systems Query operators; Data mining;
Structured Query Language;

KEYWORDS

HyPer, Database operators, Query processing, SQL, Apriori, k-
Means, DBscan

ACM Reference format:

Nina Hubig, Linnea Passing, Maximilian E. Schiile, Dimitri Vorona, Alfons
Kemper, and Thomas Neumann. 2017. HyPerInsight: Data Exploration Deep
Inside HyPer. In Proceedings of CIKM’17, Singapore, Singapore, November
6-10, 2017, 4 pages.

https://doi.org/10.1145/3132847.3133167

“First four authors in alphabetical order; they contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM’17 , November 6-10, 2017, Singapore, Singapore

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4918-5/17/11...$15.00
https://doi.org/10.1145/3132847.3133167

@ Operators
+ Lambdas

® saL

Performance

® UDFs

Data storage for external tools @

Expressiveness

Figure 1: Overview of approaches to data exploration using
relational database systems. Our system supports the novel
layer 4, where data mining is integrated directly into the
database core, thus leading to higher performance. To main-
tain expressiveness, high-order functions (lambdas) can di-
rectly be passed as parameters to the database operators.

1 INTRODUCTION

The emergence of huge data volumes is followed by a wide vari-
ety of data exploration methods and systems for mining specific
data sets. We are extending HyPer from a Hybrid Transaction and
Analytical Processing (HTAP) system that covers transactional and
analytical workloads to HTAP extended for data exploration (HTAPx).
HTAPx includes data exploration algorithms and queries that pro-
cess the whole dataset (or extensive subsets), and therefore are
computation-intensive and long-running. Typical fields of appli-
cation are machine learning, data mining, graph analytics, and
text mining. Most algorithms boil down to a model-application
approach, i.e., a two phase process where a model is created and
stored first, and then applied to the model data in a second step.
Standalone software systems like Spark [11] and Tupleware [3]
which support these kind of algorithms use DBMSs as data source.
However, a DBMS as a data storage only does not fully exploit its
potential, and is hence impeding performance, expressiveness, and
usability.

Classical RDBMSs provide an efficient and update-friendly data
management layer and many more useful features to store big data
reliably, such as user rights management and recovery procedures.
Database systems like SAP HANA [5] and HyPer [6] are already
designed to efficiently handle different HTAP workloads in a sin-
gle system. In contrast to dedicated analytical systems, database
systems store data only once and avoid ETL cycles (extraction,

https://doi.org/10.1145/3132847.3133167
https://doi.org/10.1145/3132847.3133167

transformation, and loading of data). Therefore, analytical and ex-
ploration queries are based on the latest transactionally consistent
database state.

HyPer’s compilation framework [8] makes it extra useful for
integrating computation-intensive HTAPx queries. For example,
costly data transfers are omitted. Also, embedding data exploration
in query evaluation plans leads to better optimization potentials.
Furthermore, HyPer’s MVCC (Multi-Version Concurrency Control)
supports long-running complex queries without interference with
mission-critical transactional processing [9]. In general, integrating
data exploration in HTAP systems avoids ETL costs, stale data, as
well as assembling and administrating complex system environ-
ments, and therefore facilitates ad-hoc data exploration. The result-
ing system, covering both data management and data exploration,
simplifies IT architectures. Today’s in-memory and parallelization
features of database systems, plus amenities like the restore func-
tionality, are further arguments in favor of the “one system fits all”
approach. For integrating HTAPx algorithms into HyPer we have
already discussed our four layer model in [10]. These layers are
structured hierarchically depending on their level of integration:

Layer (1) DBMSs as data storage with external analytics al-
gorithms—the nowadays most commonly used, but least
integrated approach.

Layer (2) User-defined functions (UDFs)—code snippets in
high-level languages executed by the DBMS.

Layer (3) SQL queries—including recursive common table
expressions (CTE) and our novel iteration construct.

Layer (4) Integration as physical operators—the deepest in-
tegration that unleashes highest performance.

All these approaches have certain trade-offs in flexibility and perfor-
mance as depicted in Figure 1. We proposed implementing multiple
approaches to cover the diverse needs of different user groups and
application domains in [10]. However, in this demo we emphasize
on the benefits of Layer (4): the deep integration of data exploration
tasks at the “operator-level”. This novel approach of Layer (4) com-
bines the highest performance with high flexibility, but has the
drawback to be implemented by the database architects only, while
Layer (2) and Layer (3) provide environments in which expert users
can implement their own algorithms. To increase flexibility within
(4), we propose user-defined code snippets as parameters to our
operators. These called lambda functions, pre-selecting the data-set
and distance metrics and many other, are even able to customize the
semantics of a given analytical algorithm in an application-specific
way.

The purpose of the demonstration is to experience the efficiency
of operator-centric analytics deeply integrated into a Main Memory
Database (MMDB) without the need to learn to use specialized
tools. We demonstrate a visual web interface that allows users to
examine and evaluate the query plan of analytical and exploratory
SQL queries. In our system it is possible to combine different mining
approaches in a query and flexibly compare distance metrics on
several suitable data sets from social media, geo-data and relational
data. Besides visualizing the analytical result, our user interface will
display runtime, memory footprints, aggregates, the visualization of
the query plan which is logical and physical optimized, and further
visual interpretations of the analytics result.

2 OPERATORS IN HYPER

In contrast to other database systems, the MMDB system HyPer
integrates additionally to OLAP and OLTP workloads important
data exploration functionality directly into the core of the database
system by implementing special highly-tuned operators [10]. HyPer
provides some additional advantages that further add to the integra-
tion depth: Indexes can be used to efficiently select and load input
data. NUMA-aware parallel loading and distribution of input data
is conducted before our specialized operators are called. HyPer’s
just-in-time compilation is particularly beneficial for computation-
ally intensive exploration tasks. Furthermore, all computations are
performed in main memory, hence the overhead for swapping and
buffer management is avoided. Finally, the push-based pipelining
execution model makes it simple to efficiently integrate new (sub-)
algorithms as operators, and also takes care of parallel execution
and other optimizations. Because the internal structures of database
systems are fairly different, such operators have to be specifically
designed and implemented for each system [10]. In this demo we
will show four valuable data exploration approaches and provide
at least one implementation for each one of them:

Clustering For clustering approaches we implement the mo-
del-based clustering algorithms k-Means and k-Modes as
well as the density-based algorithm DBscan [4, 10].

Classification For classification and prediction of numerical
values we implement the standard naive Bayes algorithm
[7].

Association rule mining For finding frequent itemsets in
large data we implement the apriori algorithm [1].

Graph mining graph mining is an own area, similar to min-
ing relational data, and usually focuses on community de-
tection and link prediction. We picked PageRank [2] as a
representative.

However, without modification they are not flexible, i.e. they are
not even applicable in the context of similar but slightly different
algorithms. Consider the k-Medians algorithm. It is a variant of
k-Means that uses the L1-norm (Manhattan distance) rather than
the L2-norm (Euclidean distance) as distance metric. While this
distance metric differs between the variants, their implementations
have predominant parts of code in common. Even though this
common code could be shared, different distance metrics would
make different variants of our algorithmic operators necessary.

Instead, when designing data exploration operators, we identi-
fied and aimed to exploit such similarities. Our goal was to have one
operator for a whole class of algorithms with variation points that
could be specified by the user [10]. We use lambda expressions in
SQL queries to inject user-defined code into variation points of ana-
lytics operators. Lambda expressions are anonymous SQL functions
that can be specified inside the query. For syntactic convenience,
the lambda expressions’ input and output data types are automat-
ically inferred by the database. Also, for all variation points we
provide default lambdas. Thus, non-expert users can easily fall back
to basic algorithms. With lambda-enabled analytics operators we
strive not only to keep implementation and maintenance costs low,
but especially to offer a wide variety of algorithm variants required
by data scientists. Also, because lambda functions are formulated
in SQL, they benefit from existing relational optimizations.

k-Means PageRank Naive Bayes

100 g 1000 ¢ 100
o)) o)
© © ©
3 9 % 10
8 10 8100 F g
8 3 4 1
c c <
] g 10§ S
a 3 & 01
£ £ £
o o 1F o
£ £ E 0.01
F=] =4 F=]
f= c c
2 2 2

0.01 L L L L) 0.1 L) 0.001 L L L L)

160k 800k 4m 20m 100m 500m 11k vertices 73k vertices 499k vertices 160k 800k 4m 20m 100m 500m
number of tuples [logscale] 452k edges 4.6m edges 46m edges number of tuples [logscale]
HyPer Operator —ili— HyPer Iterate HyPer SQL Apache Spark

Figure 2: k-Means experiment: varying the number of tuples N; 10 dimensions, 5 clusters. PageRank experiment: using the
LDBC SNB dataset, damping factor 0.85, and 45 iterations. Naive Bayes experiment: varying the number of tuples N.

3 EVALUATION

All experiments are carried out on a 4-socket Intel Xeon E7-4870 v2
(15x2.3 GHz per socket) server with 1 TB main memory, running
Ubuntu Linux 15.4 using kernel version 4.2.

We evaluate our physical operators, denoted as HyPer Operator,
SQL queries with our iterate operator, denoted as HyPer Iterate,
and a pure SQL implementation using recursive CTEs, denoted
as HyPer SQL, against the best open source competitor: Apache
Spark. Apache Spark 1.5.0 with MLIib as a representative of the
“big data exploration” platforms. We refer the interested reader to
the experimental evaluation of other contender systems for other
categories like standalone systems or database extensions in [10].
We evaluate both systems—Spark and HyPer—on three common
analytics queries: k-Means, PageRank and naive Bayes. To ensure a
fair comparison, both systems have to implement the same variant
of all algorithms. For fairness reasons we had to disable some opti-
mizations implemented in Apache Spark MLIib for k-Means: First,
the MLIib implementation computes lower bounds for distances
using norms, hence reducing the number of distance computations.
Second, distance computation uses previously computed norms in-
stead of computing the Euclidean distance (if the error introduced
by this method is not too big).

As expected, Apache Spark shows very competitive runtimes in
our benchmarking. Spark was especially built for these kinds of
algorithms. Still, it is up to two orders of magnitude slower than
the HyPer Operator approach, as shown in Figure 2. HyPer’s one-
system-fits-all approach comes with some overhead of database-
specific features that are not present in dedicated analytical systems
like Apache Spark. Therefore, it is important that these features do
not cause overhead when they are not used. For instance, isolation
of parallel transactions should not take a significant amount of time
when only one analytical query is running. Some database-specific
overhead, stemming e.g. from memory management and user rights
management, cannot be avoided. Nevertheless, HyPer shows far
better runtimes than dedicated systems, while also avoiding data
copying and stale data.

To put it in a nutshell, the experiments match the expected order
concerning runtimes: the deeper the integration of the data explo-
ration, the faster the system. Our results also support our idea of one
database system being sufficient for multiple workloads. While this

has been shown for combining HTAP workloads before [5, 6], our
contribution was to integrate one more workload, data exploration,
while keeping performance and usability on a high level [10].

4 DEMONSTRATION

Our web interface HyPerInsight demonstrates the scalability of data
exploration inside of HyPer on several large, but memory suffi-
cient data sets. The user interaction concept of HyPerInsight is
designed to minimize the requirement of users’ expertise with the
explored data sets. It supports users during query formulation and
encourages an iterative approach. Figure 3 shows HyPerInsight visu-
alizing a demo query for the deeply integrated k-Means algorithms
with explicitly given lambda function. The lambda can be given
in two ways: explicitly and implicitly. Implicitly given, it always
corresponds to the euclidean distance metric. Explicitly all other
metrics are also possible besides pre-selecting specific tuples for
the k-Means algorithm. The A(a, b) in the query given as example
in HyPerInsight refers to the euclidean distance as well, which is
the standard for k-Means. On the upper left side, several change-
able queries are predefined and can be run on both systems HyPer
and Spark in parallel. The lower left side shows the resulting table
and a visualization of the given data set with the resulting cluster
ids found by k-Means. On the upper right side, HyPerInsight gives
the visual interpretation of CPU runtime, memory footprint and
other system-aware measurements of both competitor systems. In
the lower right is the query plan that visualizes in several steps
how the query plan is optimized during execution. In the demon-
stration we will run a HyPerInsight instance on a demonstration
laptop with 5 graph snapshots of data loaded from Facebook, one
snapshot from Amazon item buckets and several snapshots of data
from imdB. We will motivate our demonstration by solving several
problems in social network data. Examples are: Grouping (cluster-
ing) and labeling different contacts or friends attributes in a social
network. Classifying specific groups for predicting which friends
might know other interesting people. Additionally, we pave way
to demonstrate that HyPer is capable of performing these complex
data mining techniques on live data, which is constantly updated
in the background. Thereby, we enable data experts to work on the
most recent version of data, which allows more precise analytics.

@ HyPer/nsight

select x, y, cluster Query 1
2 |from kmeans(
3 (select (xt+4xcos(x))::integer as x,(2xx+4xsin(x))::integer as y Query 3
4 A(a,b) sqrt((a.x-b.x)*2+(a.y-b.y)*2),
{
6 [)cross join studenten
Query 17
7 |order by x,y
Query 21
Search:
X il Y CLUSTER 100
90
0.00000 6.00000 0.00000 80
70
0.00000 6.00000 0.00000 604
50 .
0.00000 6.00000 0.00000 407 £ s
304 y ol '
0.00000 6.00000 0.00000 299 et e 2
104 .
0.00000 6.00000 0.00000 ol *
© 2 4 6 5 101214 16 18 20 2224
Showing 11to 5 of 400 Previous 2 3 4 5 .. 80 Next

TU Miinchen 2017, Chair for Database Systems

99ms o 99ms o

75ms 75ms

Execution time
Execution time

50ms - 50ms -

25ms o

25ms o

oms oms

o1 Q3 KMeans Q17 Q21 QL Q3 KMeans Q17 Q21
99ms - 99ms -
u 9
E E
< B
75ms- S 75ms- S
£ £
soms | D soms| @ Spark | 30ms
M HyPer 10ms
25ms | 25ms -|
oms oms
o1 Q3 KMeans Q17 Q21 QL Q3 KMeans Q17 Q21
M HyPer [Spark

o
8
|
g
=]
|
13 ! !50

STUDENTEN
3
3

TABLEFUNCTION

TABLECONSTRUCTION

Figure 3: The webinterface of HyPerInsight. Upper Left: Interactive query selection. Upper Right: Runtime evaluation. Lower
Left: Resulting table and graphical interpretation. Lower Right: Query plan optimizations.

5 TAKE-AWAY MESSAGE

In this paper, we presented HyPerInsight, a solution to visually
show and interpret the deep integration of data exploration task
in the main memory database system (MMDB) HyPer. The deep
integration of analytical operators into a high-performance MMDB
like HyPer includes automatically optimized SQL queries on various
kinds of algorithms in the data science segment. We will show
that it is possible to build meaningful visualizations on various
types of data, using a general purpose database system combining
sensible state-of-the-art hand-written solutions for compatibility,
performance and many other reasons.

6 ACKNOWLEDGEMENTS

This research was supported by the German Research Foundation
(DFG), grant NE 1677/1-1. It is part of the TUM Living Lab Con-
nected Mobility (TUM LLCM) project and has been funded by the
Bavarian Ministry of Economic Affairs and Media, Energy and
Technology (StMWi) through the Center Digitisation.Bavaria, an
initiative of the Bavarian State Government. Linnea Passing and
Dimitri Vorona have been sponsored in part by the German Federal
Ministry of Education and Research (BMBF), grant TUM: 011S12057.

REFERENCES

[1] Rakesh Agrawal and Ramakrishnan Srikant. 1994. Fast Algorithms for Mining
Association Rules in Large Databases. In Proc. VLDB Endow., Vol. 1215. Morgan
Kaufmann, 487-499.

[2] Sergey Brin and Lawrence Page. 1998. The Anatomy of a Large-Scale Hypertex-
tual Web Search Engine. Computer Networks 30, 1-7 (1998), 107-117.

[3] Andrew Crotty, Alex Galakatos, and Tim Kraska. 2014. Tupleware: Distributed
Machine Learning on Small Clusters. IEEE Data Eng. Bull. 37, 3 (2014), 63-76.

[4] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Kdd. AAAI Press, 226-231.

[5] FranzFirber, Norman May, Wolfgang Lehner, Philipp Grof3e, Ingo Miiller, Hannes
Rauhe, and Jonathan Dees. 2012. The SAP HANA Database — An Architecture
Overview. IEEE Data Eng. Bull. 35, 1 (2012), 28-33.

[6] Alfons Kemper and Thomas Neumann. 2011. HyPer: A Hybrid OLTP & OLAP
Main Memory Database System Based on Virtual Memory Snapshots. In ICDE
2011. IEEE Computer Society, 195-206.

[7] Kevin P. Murphy. 2006. Naive Bayes Classifiers. (2006).

[8] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern

Hardware. Proc. VLDB Endow. 4, 9 (2011), 539-550.

Thomas Neumann, Tobias Miihlbauer, and Alfons Kemper. 2015. Fast Serializable

Multi-Version Concurrency Control for Main-Memory Database Systems. In

Proc. SIGMOD 2015. ACM, 677-689.

Linnea Passing, Manuel Then, Nina Hubig, Michael Schreier, Stephan Giinne-

mann, Alfons Kemper, and Thomas Neumann. 2017. SQL- and Operator-centric

Data Analytics in Relational Main-Memory Databases. In EDBT 2017. OpenPro-

ceedings.org, 84-95.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and

Ton Stoica. 2010. Spark: Cluster Computing with Working Sets. In Proc. HotCloud

2010. USENIX Association, 95.

[9

—

(10]

(1]

	Abstract
	1 Introduction
	2 Operators in HyPer
	3 Evaluation
	4 Demonstration
	5 Take-Away Message
	6 Acknowledgements
	References

